Masters Degrees (Plant Pathology)
Permanent URI for this collection
Browse
Recent Submissions
Now showing 1 - 5 of 96
- ItemCharacterisation and detection of mefenoxam sensitivity in phytophthora nicotianae and phytophthora citrophthora from citrus in South Africa(Stellenbosch : Stellenbosch University, 2024-03) Moller, Heike; Rose, Lindy J. ; Van Niekerk, Jan; Stellenbosch University. Faculty of AgriSciences. Dept. of Plant Pathology.ENGLISH ABSTRACT: In South Africa, citrus is of high agricultural and economic importance, representing one of the country's major fruit crops. This sector plays a pivotal role in the nation's economy by substantially contributing to export earnings and employment opportunities. Citrus production is, however, threatened by oomycete pathogens, particularly Phytophthora, that can cause citrus diseases resulting in significant economic losses. Phytophthora nicotianae and P. citrophthora have been reported in every citrus-producing province in South Africa including citrus nurseries. These soil-borne pathogens primarily target the roots and the lower parts of citrus trees, causing root rot, lesions, gummosis, and brown rot of citrus fruit. Infected trees experience a decline in vigour, leading to stunted growth, wilting, and death in severe cases. These diseases also compromise the tree's ability to translocate water and nutrients, resulting in reduced fruit production and poor fruit quality. Mefenoxam is routinely used in citrus nurseries and orchards to treat Phytophthora infections. This chemical inhibits RNA polymerase I, responsible for rRNA synthesis. Its action prevents mycelial growth, sporangia formation, and germ tube growth, but due to its site-specificity, there is a high risk of resistance development. Continuous use of mefenoxam by citrus growers has led to the detection of mefenoxam-resistant Phytophthora isolates globally, including in South African nurseries and orchards. The monitoring of resistance to mefenoxam is important to ensure the lasting efficacy of this highly effective chemical and is reliant on the rapid and accurate detection of mefenoxam sensitivity. In this study, mefenoxam-insensitive and -sensitive P. nicotianae and P. citrophthora isolates were identified by in vitro fungicide sensitivity testing using Ridomil Gold 480 SL. These isolates were subjected to whole genome sequencing (WGS) using an optimised DNA isolation protocol to obtain high-quality, intact DNA from Phytophthora mycelia. A complete genome assembly of P. citrophthora was generated, for the first time, using PacBio HiFi long-read sequencing and used as the reference genome for WGS obtained by Illumina sequencing. Single nucleotide polymorphisms (SNPs) were detected in ABC transporter and cytochrome P450 genes as well as in RNA polymerase III subunits for P. nicotianae isolates and in RNA polymerase II and III subunits for P. citrophthora isolates. A quantitative polymerase chain reaction (qPCR) assay was developed to differentiate between mefenoxam-sensitive and homozygous-resistant P. citrophthora isolates. The specificity of this assay for P. citrophthora was validated against various other citrus soil-borne pathogens. The low number of insensitive isolates significantly limited the design of qPCR assays for P. nicotianae. Additionally, we evaluated a multiplex assay to detect P. citrophthora and assess mefenoxam sensitivity, simultaneously, although the amplification products could not be differentiated from each other, necessitating further optimisation. Overall, this study offers important genetic insights into mefenoxam sensitivity in Phytophthora, setting a foundation for the development of diagnostic tools to monitor fungicide resistance and manage citrus diseases caused by oomycetes more effectively.
- ItemAssessment of dieback pathogens of apple trees to be removed and the detection of diplodia seriata on chipped apple wood(Stellenbosch : Stellenbosch University, 2022-03) Jacobs, Vernon Guy; Mostert, Lizel; Halleen, Francois; Stellenbosch University. Faculty of AgriSciences. Dept. of Plant Pathology.ENGLISH ABSTRACT: The use of chipped fruit trees as mulch in apple orchards is a common practice in the deciduous fruit industry of South Africa. Apple trees destined to be removed are usually old, do not produce optimally or need to make way for new varieties. These apple trees often have visible dieback symptoms, caused by canker and wood rot pathogens. The use of mulch produced from infected trees holds a risk to young or newly established apple orchards that could get infected with the spread of diseased wood chips as mulch. However, the presence and ability of canker and wood rot pathogens to survive on mulch made from apple trees need to be determined. Therefore, the aim of this study was to assess the diversity of canker and wood rot pathogens present on apple trees destined to be removed and chipped, and to determine the presence and viability of the canker pathogen, Diplodia seriata, on chipped apple tree wood used for mulches. The diversity of canker and wood rot pathogens present in apple trees to be removed was determined. Branches or trunks showing dieback symptoms, cankers or wood rot were sampled from 14 orchards in the Grabouw, Vyeboom and Kouebokkeveld apple producing areas in the Western Cape of South Africa. Isolations were made from a diseased branch or trunk sample taken from ten trees of every orchard. Canker and wood rot pathogens were isolated from 118 of the 144 trees sampled. Known canker pathogens identified included Cytospora parasitica, Diaporthe eres, Diplodia seriata, Eutypa lata, Phaeoacremonium fraxinopennsylvanicum, Pm. minimum and Pm. viticola. Of the canker pathogens, E. lata was predominantly isolated, followed by D. seriata and species of Phaeoacremonium. Species not frequently reported were Cy. parasitica and Dia. eres. Lesser-known fungi reported included Coniochaeta ligniaria, C. velutina and Pleurostoma richardsiae. The most diverse taxonomic group identified was the wood rotting fungus Agaricomycetes. Trametes versicolor was predominantly isolated. Chondrostereum purpureum and Schizophyllum commune were reported less. Lesser-known wood rot species identified included Bjerkandera adusta, Coprinellus micaceus, Fomitiporia capensis, Fomitiporella americana, Fo. viticola, Inocutis spp. (Taxon 3), Oxyporus latemarginatus, Phanerochaeta chrysosporium, and Phlebia sp. Several fungal species were reported for the first time from apple trees: C. ligniaria, Pl. richardsiae, F. capensis and two species of Fomitiporella, Fo. americana and Fo. viticola. Diplodia seriata is an important canker pathogen of apple trees often associated with dieback symptoms of young and mature trees. The presence of D. seriata on chipped wood pieces was investigated. Chipped apple wood pieces were sampled from heaps and when spread onto the orchard floor of three orchards in the Grabouw and Vyeboom production regions. Wood chips were sampled four times from October 2020 (heaps) to April 2021 (orchard floor). Visual inspections were done on samples collected, whereas quantitative PCR (qPCR) analyses of DNA isolated from water washes of wood pieces were done on samples from the first and last sampling. Two apple wood chip heaps were generated in the winter of 2020 (F1-2020, F2-2020), and one heap from 2019 (F1-2019). The presence of D. seriata pycnidia and viable conidia was investigated on a selection of samples. Pycnidia and/ or conidia of D. seriata were present on all wood chips assessed for F1-2019, F1-2020 and F2- 2020 sampled in October 2020 and April 2021. Diplodia seriata cultures obtained from 52 of 60 wood chips were able to survive for 20-months (F1-2019). A qPCR assay was developed to detect D. seriata from mulch wood pieces. The species-specific primers developed was specific for D. seriata and the limit of detection and limit of quantification were 571 fg and 2859 fg, respectively. Diplodia seriata was detected from DNA extracted from water washes of wood chips sampled in October 2020 and April 2021 from all three orchards. From 120 samples, 84% tested positive for D. seriata. This study showed that apple trees, chipped and used for mulch, harbour important canker and wood rot pathogens. Many of these pathogens can form fruiting structures on the wood. Visual field observations during this study confirmed the presence of basidiocarps for wood rot pathogens such T. versicolor and S. commune and pycnidia of canker pathogen, D. seriata, from cankered areas on trees in orchards sampled from. Spores could easily be distributed from wood chips made from infected trees as inoculum could be present. The presence of viable D. seriata inoculum on apple tree wood chips used for mulch in younger orchards illustrates a risk of using wood chips made from old orchards. A similar risk could be expected for other canker and wood rot pathogens associated with dieback of apple trees. However, further investigation should be done to assess the risk of transmission of other known disease-causing pathogens. The level of dieback of older orchards further contributes to the risk of the mulch. Decision-making should, therefore, include assessing the health status of orchards to be removed and if it should be used as mulch. Alternatively cankered wood or dead wood can be removed before the removal of orchards and chipping. If apple tree wood chips are used as mulch other options can be explored such as composting and the application of heat treatments to ensure that mulch material does not contribute to inoculum of canker and wood rot pathogens.
- ItemCharacterisation and pathogenicity of soilborne fungi from Western Cape olive orchards(Stellenbosch : Stellenbosch University, 2022-03) Bishop, Robyn; Spies, Chris, F. J.; Mostert, Lizel; Halleen, Francois; Stellenbosch University. Faculty of AgriSciences. Dept. of Plant Pathology.ENGLISH ABSTRACT: Soilborne diseases are of concern to the olive industry worldwide, causing significant financial losses. The most devastating of these diseases is Verticillium wilt caused by Verticillium dahliae, followed by Phytophthora root rot. Species of Cylindrocarpon-like fungi, Fusarium, Macrophomina, Pythium and Rhizoctonia have also been associated with these diseases on olive, resulting in symptoms of dieback, defoliation, wilting, root rot, stunted growth, and tree death. In 2019, a survey targeting Cylindrocarpon-like fungi, Phytophthora and Verticillium revealed a high incidence and wide distribution of Cylindrocarpon-like fungi (mainly the Dactylonectria macrodidyma species complex) and Pythium irregulare in Western Cape olive orchards. However, Phytophthora (three species) was recovered from only 8% of samples, and no Verticillium was found. The survey also uncovered other potential pathogenic genera such as Fusarium, Diaporthe, Macrophomina and Rhizoctonia, but these were not identified to species level. Consequently, the aims of this study were to identify the most frequently recovered fungi, refine the species identities of isolates previously identified as the Da. macrodidyma species complex, and evaluate the pathogenicity of widely distributed species and species suspected to be pathogens. Unidentified isolates form the 2019 survey were divided into morphological groups. Groups containing isolates recovered from five or more of the thirteen sampling sites were selected for identification to species level using PCR, sequencing and phylogenetic analyses. Phylogenetic analyses revealed four species of Diaporthe, fourteen species of Fusarium, one species of Macrophomina, eight species of Neocosmospora, and nine anastomosis groups (AGs) of Rhizoctonia. Morphological descriptions of two new Diaporthe species were compiled. Isolates previously identified as the Da. macrodidyma species complex were delineated into Da. macrodidyma, Da. novozelandica, Da. sp., Da. torresensis, and Da. pauciseptata. The most widely distributed species included Da. sp., Da. macrodidyma, Diaporthe sp RB-2019a., F. fabacearum, F. nirenbergiae, M. phaseolina, and Rhizoctonia AG-G. Species of Fusarium, Macrophomina, Neocosmospora, Phytophthora, Pythium and Rhizoctonia have been reported as olive pathogens in other countries, however, none of these reports identified phylogenetic species within Fusarium and Neocosmospora, and none reported AGs of Rhizoctonia. Species identified in this study that have been reported on olives previously include Da. ecuadoriensis, Da. macrodidyma, Da novozelandica, Da. sp., Da. torresensis, Da. valentina, Di. ambigua, F. oxysporum, M. phaseolina, N. solani, Pleurostoma richardsiae, and Rhizoctonia spp. In addition to the two new Diaporthe species, Cadophora constrictospora, Da. pauciseptata, F. clavus, F. udum, nine species from the Fusarium oxysporum species complex, seven species of Neocosmospora, as well as nine different AGs of Rhizoctonia are reported on olive for the first time worldwide. The pathogenicity of selected species was evaluated on three-month-old ‘Mission’ cuttings under wet, moderate and dry irrigation regimes in glasshouse trials. Twenty–nine isolates representing Da. macrodidyma, Da. novozelandica, Da. sp., Da. pauciseptata, Da. torresensis, Di. ambigua, Diaporthe. sp., F. fabacearum, F. nirenbergiae, M. phaseolina, N. solani, Ph. multivora, Ph. pseudocryptogea, Py. irregulare, Py. oligandrum, Rhizoctonia AG- G, and V. dahliae were included. Species of Da. macrodidyma, F. nirenbergiae, Ph. Multivora, Ph. pseudocryptogea, Rhizoctonia AG-G, and V. dahliae were found to be pathogenic towards olive trees. The different watering regimes had no consistent effect on pathogenicity. This study was the first to evaluate the pathogenicity of soilborne fungi on olive trees in South Africa and to report the pathogenicity of three species for the first time on olive, including F. nirenbergiae, Ph. pseudocryptogea, and Rhizoctonia AG-G. Future research should aim to address the management of these diseases on olive.
- ItemSensitivity of citrus rootstocks to two citrus viroids and the influence on tree growth(Stellenbosch : Stellenbosch University, 2022-03) Steyn, Chanel; Fourie, Paul; Cook, Glynnis; Mostert, Lizel; Stellenbosch University. Faculty of AgriSciences. Dept. of Plant Pathology.ENGLISH ABSTRACT: Despite the supply of disease-free propagation material to the industry by the South African Citrus Improvement Scheme, citrus viroids, particularly citrus dwarfing viroid (CDVd) and hop stunt viroid (HSVd), are occasionally detected in commercial orchards. Locally, these viroids were associated with stunting of trees on sensitive trifoliate hybrid rootstocks. New rootstock cultivars are developed and, in addition to their horticultural performance, it is important to evaluate the effects of viroid infections. A field trial was established consisting of ‘Midknight’ Valencia on ten different rootstocks, including a trifoliate (‘Rich16-6’), two non-trifoliates (Rough Lemon ‘Cairn’ and ‘Rangpur’ lime) and seven trifoliate hybrids (‘US-812’, ‘MxT’, ‘C-22 Bitters’, ‘C-54 Carpenter’ and ‘C-57 Furr’ citrandarins, as well as ‘Carrizo’ and ‘C-35’ citranges). The scions were graft-inoculated with CDVd as a single infection, and in combination with HSVd to investigate potential viroid interactions. Transmission detection was notably erratic in scions on some rootstocks, particularly MxT and C-22, indicating that rootstocks may influence viroid distribution within scions. To study the effect of rootstocks on spatial distribution of CDVd and HSVd within scions on C-35, Carrizo, MxT and Rough Lemon, a relative RT-qPCR assay was developed, using GAPC2 (Glyceraldehyde-3- phosphate dehydrogenase C2) and UPL7 (Ubiquitin-protein ligase 7) reference genes for qPCR data normalization, to determine viroid concentration ratios from inner and outer scion canopy positions. Large variation in concentration ratios were seen for both viroids, demonstrating uneven spatial distribution, especially for CDVd in scions on C-35 and Rough Lemon, but also HSVd in scions on C-35. Despite this variation, the inner canopy proved to be a more reliable sampling position for detection as higher viroid titres were mostly determined from this position. Absolute CDVd and HSVd quantification was done from inner canopies of scions on the ten rootstocks. CDVd copies ranged from 1 to 831, and HSVd copies were determined in a broader range from 8 to 3963. Rootstock cultivar had a significant influence on viroid titres in the scion. Scions on C-22 and Rich16-6 had significantly lower CDVd titres than C-57, Carrizo, ‘Rangpur’ lime, Rough Lemon and US-812. However, scions on MxT and Rich16-6 accumulated significantly fewer HSVd copies than C-35, C-57, Carrizo and ‘Rangpur’ lime, indicating that viroid species accumulation differed for each rootstock. CDVd titres were not significantly influenced by co-infection with HSVd, but HSVd reached significantly higher copy numbers than CDVd in scions on all ten rootstocks, with as much as a 24-fold increase of HSVd compared to CDVd copies in scions on C-35. CDVd and HSVd genome sequences generated from a scion of each rootstock, 19 months post inoculation, were determined and mutations were detected within the pathogenic regions of both viroids. The significance of these mutations requires further investigation. After 2 years of field growth, no significant influence of viroid infections on either trunk circumference or canopy volume, were observed. However, impact on growth is expected only after 4 to 5 years in the field. This study indicated that rootstock cultivar influenced the spatial distribution, accumulation and genetic variability of two citrus viroids within ‘Midknight’ Valencia scions. The quantitative real-time RT-PCR assays developed in this study will be used in further analysis of this field trial to monitor viroid titres in both scions and rootstocks to unravel the complex interactions of the viroids with both scion and rootstocks.
- ItemIdentification and evaluation of biocontrol agents of citrus replant pathogens(Stellenbosch : Stellenbosch University, 2021-12) Reens, Sone Veniese; Van Niekerk, Jan; Mostert, L.; Stempien, E.; Stellenbosch University. Faculty of AgriSciences. Dept. of Plant Pathology.ENGLISH ABSTRACT: Citrus is the second largest fruit crop in South Africa with a well-known position in the fruit industry due to its local consumption and exports to neighbouring countries. Citrus is susceptible to several pathogens that cause incalculable losses to the crop. One of these afflictions is replant disease which is associated with a complex of soilborne pathogens. Replant disease is observed where young, healthy nursery trees are planted on old orchard sites. The phenomenon is characterised by the newly planted trees being stunted with small leaves and showing low vigour. The major soilborne pathogens associated with replant soils are Phytophthora nicotianae, Phytophthora citrophthora, Pythium irregulare s.s. and Neocosmospora species. At present, no biological control measures are available to manage the complex of replant pathogens, as previous studies conducted in South Africa have only focused on the effect of different biocontrol agents (BCAs) on Phytophthora spp. related to citrus and did not consider other oomycete pathogens such as Pythium spp., fungal pathogens such as Neocosmospora spp., or instances where these pathogens occur together. Therefore, the aim of this study was to identify and evaluate potential biocontrol agents obtained from old citrus soils for the management of the citrus replant pathogen complex. Rhizospheric soil along with their roots were collected from two orchards, Citrusdal (Western Cape) and Kirkwood (Eastern Cape) that showed replant problems. Soil samples were subjected to serial dilution plating using mediums, NA, PDA and PDA+, while roots were also plated out on these mentioned mediums. The isolation of microorganisms from soil and roots was focused on Bacillus, Pseudomonas and Trichoderma spp., as these are known to have potential as BCAs. For the preliminary selection of potential candidates from all isolates found in the citrus orchards, a non-volatile test was performed for Trichoderma spp. and for the bacterial isolates, the dual culture test was used. From the eight Trichoderma isolates and 48 bacterial isolates obtained from the citrus rhizosphere soil and roots, two Trichoderma isolates and two bacterial isolates were selected and were molecularly identified as Trichoderma harzianum, Bacillus subtilis and Pseudomonas fluorescens. These selected candidates inhibited the growth of the pathogen complex by at least 50% compared to the control and it was assumed that it is satisfactory to possibly be a BCA. The selected BCAs were consequently subjected to further in vitro screening, where T. harzianum isolates, P4 and P16 were subjected to a volatile and dual culture test, while B. subtilis N19 and P. fluorescens N83 were subjected to a non-volatile and volatile test. Generally, the results of the non-volatile tests were satisfactory, as it showed that Trichoderma, Bacillus and Pseudomonas spp. has different inhibitory abilities against the replant pathogens and was therefore the best screening test. It has been shown that the T. harzianum isolates can be used against the whole complex of replant pathogens, while the bacterial isolates showed only good antagonistic activity against the oomycete pathogens. Based on this observation we hypothesize that the mode-of-action for the selected BCAs could be due to antibiosis (non-volatile test). The efficacy of the selected BCAs to colonize the roots of Troyer citrange seedlings and promote plant growth was also investigated. This was done by determining the effect of the interaction between seedlings treated with the pathogen alone, biocontrol alone and pathogen with biocontrol combination, by using specific growth parameters along with re-isolation of the pathogen and BCA. High levels of the pathogen were observed in the seedlings treated with the pathogen only. The BCAs were also able to colonize the roots at high levels. However, it was also clear that the BCA or pathogen population did not decrease when combined. Two exceptions were found, where P. fluorescens N83 had a higher colonization level when challenged with P. nicotianae, and T harzianum P16 colonization levels were lower in the presence of P. irregulare s.s. Regarding the growth parameters, it was found that none of the treatments had any significant effect on the plant growth. The relatively poor response of the plants to the BCAs may be because the BCAs may have needed more time to establish a symbiotic relationship with the plant before it could have any benefits. Therefore, it would be advisable to further investigate where optimal conditions can be established to obtain a clearer picture of the influence of the BCA on the replant pathogens.