Browsing by Author "Louw, Johan"
Now showing 1 - 20 of 22
Results Per Page
Sort Options
- Item13 Ways to turn people on(Stellenbosch : University of Stellenbosch Business School, 2010) Swart, Marinda; Louw, Johan
- ItemAspalathin protects the heart against hyperglycemia-induced oxidative damage by up-regulating Nrf2 expression(MDPI, 2017) Dludla, Phiwayinkosi V.; Muller, Christo J. F.; Joubert, Elizabeth; Louw, Johan; Essop, M. Faadiel; Gabuza, Kwazi B.; Ghoor, Samira; Huisamen, Barbara; Johnson, RabiaAspalathin (ASP) can protect H9c2 cardiomyocytes against high glucose (HG)-induced shifts in myocardial substrate preference, oxidative stress, and apoptosis. The protective mechanism of ASP remains unknown. However, as one of possible, it is well known that phytochemical flavonoids reduce oxidative stress via nuclear factor (erythroid-derived 2)-like 2 (Nrf2) activation resulting in up-regulation of antioxidant genes and enzymes. Therefore, we hypothesized that ASP protects the myocardium against HG- and hyperglycemia-induced oxidative damage by up-regulating Nrf2 expression in H9c2 cardiomyocytes and diabetic (db/db) mice, respectively. Using an oxidative stress RT2 Profiler PCR array, ASP at a dose of 1 µM was demonstrated to protect H9c2 cardiomyocytes against HG-induced oxidative stress, but silencing of Nrf2 abolished this protective response of ASP and exacerbated cardiomyocyte apoptosis. Db/db mice and their non-diabetic (db/+) littermate controls were subsequently treated daily for six weeks with either a low (13 mg/kg) or high (130 mg/kg) ASP dose. Compared to nondiabetic mice the db/db mice presented increased cardiac remodeling and enlarged left ventricular wall that occurred concomitant to enhanced oxidative stress. Daily treatment of mice with ASP at a dose of 130 mg/kg for six weeks was more effective at reversing complications than both a low dose ASP or metformin, eliciting enhanced expression of Nrf2 and its downstream antioxidant genes. These results indicate that ASP maintains cellular homeostasis and protects the myocardium against hyperglycemia-induced oxidative stress through activation of Nrf2 and its downstream target genes.
- ItemAspalathin reverts doxorubicin-induced cardiotoxicity through increased autophagy and decreased expression of p53/mTOR/p62 signaling(MDPI, 2017-11-01) Johnson, Rabia; Shabalala, Samukelisiwe; Louw, Johan; Kappo, Abidemi Paul; Muller, Christo John FrederickENGLISH ABSTRACT: Doxorubicin (Dox) is an effective chemotherapeutic agent used in the treatment of various cancers. Its clinical use is often limited due to its potentially fatal cardiotoxic side effect. Increasing evidence indicates that tumour protein p53 (p53), adenosine monophosphate-activated protein kinase (AMPK), nucleoporin p62 (p62), and the mammalian target of rapamycin (mTOR) are critical mediators of Dox-induced apoptosis, and subsequent dysregulation of autophagy. Aspalathin, a polyphenolic dihydrochalcone C-glucoside has been shown to activate AMPK while decreasing the expression of p53. However, the role that aspalathin could play in the inhibition of Dox-induced cardiotoxicity through increased autophagy flux remained unexplored. H9c2 cardiomyocytes and Caov-3 ovarian cancer cells were cultured in Dulbecco’s Modified Eagle’s medium and treated with or without Dox for five days. Thereafter, cells exposed to 0.2 µM Dox were co-treated with either 20 µM Dexrazozane (Dexra) or 0.2 µM aspalathin (ASP) daily for 5 days. Results obtained showed that ASP mediates its cytoprotective effect in a p53-dependent manner, by increasing the Bcl-2/Bax ratio and decreasing apoptosis. The latter effect was diminished through ASP-induced activation of autophagy-related genes (Atgs) with an associated decrease in p62 through induction of AMPK and Fox01. Furthermore, we showed that ASP was able to potentiate this effect without decreasing the anti-cancer efficacy of Dox, as could be observed in Caov-3 ovarian cancer cells. Taken together, the data presented in this study provides a credible mechanism by which ASP co-treatment could protect the myocardium from Dox-induced cardiotoxicity.
- ItemAspalathin, a natural product with the potential to reverse hepatic insulin resistance by improving energy metabolism and mitochondrial respiration(Public Library of Science, 2019) Mazibuko-Mbeje, Sithandiwe E.; Dludla, Phiwayinkosi V.; Johnson, Rabia; Joubert, Elizabeth; Louw, Johan; Ziqubu, Khanyisani; Tiano, Luca; Silvestri, Sonia; Orlando, Patrick; Opoku, Andy R.; Muller, Christo J. F.ENGLISH ABSTRACT: Aspalathin is a rooibos flavonoid with established blood glucose lowering properties, however, its efficacy to moderate complications associated with hepatic insulin resistance is unknown. To study such effects, C3A liver cells exposed to palmitate were used as a model of hepatic insulin resistance. These hepatocytes displayed impaired substrate metabolism, including reduced glucose transport and free fatty acid uptake. These defects included impaired insulin signaling, evident through reduced phosphatidylinositol-4,5-bisphosphate 3-kinase/ protein kinase B (PI3K/AKT) protein expression, and mitochondrial dysfunction, depicted by a lower mitochondrial respiration rate. Aspalathin was able to ameliorate these defects by correcting altered substrate metabolism, improving insulin signaling and mitochondrial bioenergetics. Activation of 5´-adenosine monophosphate-activated protein kinase (AMPK) may be a plausible mechanism by which aspalathin increases hepatic energy expenditure. Overall, these results encourage further studies assessing the potential use of aspalathin as a nutraceutical to improve hepatocellular energy expenditure, and reverse metabolic disease-associated complications.
- ItemAspalathin-enriched green rooibos extract reduces hepatic insulin resistance by modulating PI3K/AKT and AMPK pathways(MDPI, 2019-02-01) Mazibuko-Mbeje, Sithandiwe E.; Dludla, Phiwayinkosi V.; Roux, Candice; Johnson, Rabia; Ghoor, Samira; Joubert, Elizabeth; Louw, JohanWe previously demonstrated that an aspalathin-enriched green rooibos extract (GRE) reversed palmitate-induced insulin resistance in C2C12 skeletal muscle and 3T3-L1 fat cells by modulating key effectors of insulin signalling such as phosphatidylinositol-4,5-bisphosphate 3-kinase/protein kinase B (PI3K/AKT) and AMP-activated protein kinase (AMPK). However, the effect of GRE on hepatic insulin resistance is unknown. The effects of GRE on lipid-induced hepatic insulin resistance using palmitate-exposed C3A liver cells and obese insulin resistant (OBIR) rats were explored. GRE attenuated the palmitate-induced impairment of glucose and lipid metabolism in treated C3A cells and improved insulin sensitivity in OBIR rats. Mechanistically, GRE treatment significantly increased PI3K/AKT and AMPK phosphorylation while concurrently enhancing glucose transporter 2 expression. These findings were further supported by marked stimulation of genes involved in glucose metabolism, such as insulin receptor (Insr) and insulin receptor substrate 1 and 2 (Irs1 and Irs2), as well as those involved in lipid metabolism, including Forkhead box protein O1 (FOXO1) and carnitine palmitoyl transferase 1 (CPT1) following GRE treatment. GRE showed a strong potential to ameliorate hepatic insulin resistance by improving insulin sensitivity through the regulation of PI3K/AKT, FOXO1 and AMPK-mediated pathways.
- ItemAspalathin-rich green rooibos extract lowers LDL-cholesterol and oxidative status in high-fat diet-induced diabetic vervet monkeys(2019-05-02) Orlando, Patrick; Chellan, Nireshni; Louw, Johan; Tiano, Luca; Cirilli, Ilenia; Dludla, Phiwayinkosi; Joubert, Elizabeth; Muller, Christo J. F.Type 2 diabetic patients possess a two to four-fold-increased risk for cardiovascular diseases (CVD). Hyperglycemia, oxidative stress associated with endothelial dysfunction and dyslipidemia are regarded as pro-atherogenic mechanisms of CVD. In this study, high-fat diet-induced diabetic and non-diabetic vervet monkeys were treated with 90 mg/kg of aspalathin-rich green rooibos extract (Afriplex GRT) for 28 days, followed by a 1-month wash-out period. Supplementation showed improvements in both the intravenous glucose tolerance test (IVGTT) glycemic area under curve (AUC) and total cholesterol (due to a decrease of the low-density lipoprotein [LDL]) values in diabetics, while non-diabetic monkeys benefited from an increase in high-density lipoprotein (HDL) levels. No variation of plasma coenzyme Q10 (CoQ10) were found, suggesting that the LDL-lowering effect of Afriplex GRT could be related to its ability to modulate the mevalonate pathway differently from statins. Concerning the plasma oxidative status, a decrease in percentage of oxidized CoQ10 and circulating oxidized LDL (ox-LDL) levels after supplementation was observed in diabetics. Finally, the direct correlation between the amount of oxidized LDL and total LDL concentration, and the inverse correlation between ox-LDL and plasma CoQ10 levels, detected in the diabetic monkeys highlighted the potential cardiovascular protective role of green rooibos extract. Taken together, these findings suggest that Afriplex GRT could counteract hyperglycemia, oxidative stress and dyslipidemia, thereby lowering fundamental cardiovascular risk factors associated with diabetes.
- ItemBlood-based DNA methylation biomarkers for type 2 diabetes : potential for clinical applications(Frontiers Media, 2018) Willmer, Tarryn; Johnson, Rabia; Louw, Johan; Pheiffer, CarmenENGLISH ABSTRACT: Type 2 diabetes (T2D) is a leading cause of death and disability worldwide. It is a chronic metabolic disorder that develops due to an interplay of genetic, lifestyle, and environmental factors. The biological onset of the disease occurs long before clinical symptoms develop, thus the search for early diagnostic and prognostic biomarkers, which could facilitate intervention strategies to prevent or delay disease progression, has increased considerably in recent years. Epigenetic modifications represent important links between genetic, environmental and lifestyle cues and increasing evidence implicate altered epigenetic marks such as DNA methylation, the most characterized and widely studied epigenetic mechanism, in the pathogenesis of T2D. This review provides an update of the current status of DNA methylation as a biomarker for T2D. Four databases, Scopus, Pubmed, Cochrane Central, and Google Scholar were searched for studies investigating DNA methylation in blood. Thirty-seven studies were identified, and are summarized with respect to population characteristics, biological source, and method of DNA methylation quantification (global, candidate gene or genome-wide). We highlight that differential methylation of the TCF7L2, KCNQ1, ABCG1, TXNIP, PHOSPHO1, SREBF1, SLC30A8, and FTO genes in blood are reproducibly associated with T2D in different population groups. These genes should be prioritized and replicated in longitudinal studies across more populations in future studies. Finally, we discuss the limitations faced by DNA methylation studies, which include including interpatient variability, cellular heterogeneity, and lack of accounting for study confounders. These limitations and challenges must be overcome before the implementation of blood-based DNA methylation biomarkers into a clinical setting. We emphasize the need for longitudinal prospective studies to support the robustness of the current findings of this review.
- ItemCoenzyme Q10 supplementation improves adipokine levels and alleviates inflammation and lipid peroxidation in conditions of metabolic syndrome : a meta-analysis of randomized controlled trials(MDPI, 2020-05-04) Dludla, Phiwayinkosi V.; Orlando, Patrick; Silvestri, Sonia; Marcheggiani, Fabio; Cirilli, Ilenia; Nyambuya, Tawanda M.; Mxinwa, Vuyolwethu; Mokgalaboni, Kabelo; Nkambule, Bongani B.; Johnson, Rabia; Mazibuko-Mbeje, Sithandiwe E.; Muller, Christo J. F.; Louw, Johan; Tiano, LucaEvidence from randomized controlled trials (RCTs) suggests that coenzyme Q10 (CoQ10) can regulate adipokine levels to impact inflammation and oxidative stress in conditions of metabolic syndrome. Here, prominent electronic databases such as MEDLINE, Cochrane Library, and EMBASE were searched for eligible RCTs reporting on any correlation between adipokine levels and modulation of inflammation and oxidative stress in individuals with metabolic syndrome taking CoQ10. The risk of bias was assessed using the modified Black and Downs checklist, while the Grading of Recommendations Assessment, Development and Evaluation (GRADE) tool was used to evaluate the quality of evidence. Results from the current meta-analysis, involving 318 participants, showed that CoQ10 supplementation in individuals with metabolic syndrome increased adiponectin levels when compared to those on placebo (SMD: 1.44 [95% CI: −0.13, 3.00]; I2 = 96%, p < 0.00001). Moreover, CoQ10 supplementation significantly lowered inflammation markers in individuals with metabolic syndrome in comparison to those on placebo (SMD: −0.31 [95% CI: −0.54, −0.08]; I2 = 51%, p = 0.07). Such benefits with CoQ10 supplementation were related to its ameliorative effects on lipid peroxidation by reducing malondialdehyde levels, concomitant to improving glucose control and liver function. The overall findings suggest that optimal regulation of adipokine function is crucial for the beneficial effects of CoQ10 in improving metabolic health.
- ItemDNA methylation of FKBP5 in South African women : associations with obesity and insulin resistance(BMC, 2020-09) Willmer, Tarryn; Goedecke, Julia H.; Dias, Stephanie; Louw, Johan; Pheiffer, CarmenBackground: Disruption of the hypothalamic-pituitary-adrenal (HPA) axis, a neuroendocrine system associated with the stress response, has been hypothesized to contribute to obesity development. This may be mediated through epigenetic modulation of HPA axis-regulatory genes in response to metabolic stressors. The aim of this study was to investigate adipose tissue depot-specific DNA methylation differences in the glucocorticoid receptor (GR) and its co-chaperone, FK506-binding protein 51 kDa (FKBP5), both key modulators of the HPA axis. Methods: Abdominal subcutaneous adipose tissue (ASAT) and gluteal subcutaneous adipose tissue (GSAT) biopsies were obtained from a sample of 27 obese and 27 normal weight urban-dwelling South African women. DNA methylation and gene expression were measured by pyrosequencing and quantitative real-time PCR, respectively. Spearman's correlation coefficients, orthogonal partial least-squares discriminant analysis and multivariable linear regression were performed to evaluate the associations between DNA methylation, messenger RNA (mRNA) expression and key indices of obesity and metabolic dysfunction. Results: Two CpG dinucleotides within intron 7 of FKBP5 were hypermethylated in both ASAT and GSAT in obese compared to normal weight women, while no differences in GR methylation were observed. Higher percentage methylation of the two FKBP5 CpG sites correlated with adiposity (body mass index and waist circumference), insulin resistance (homeostasis model for insulin resistance, fasting insulin and plasma adipokines) and systemic inflammation (c-reactive protein) in both adipose depots. GR and FKBP5 mRNA levels were lower in GSAT, but not ASAT, of obese compared to normal weight women. Moreover, FKBP5 mRNA levels were inversely correlated with DNA methylation and positively associated with adiposity, metabolic and inflammatory parameters. Conclusions: These findings associate dysregulated FKBP5 methylation and mRNA expression with obesity and insulin resistance in South African women. Additional studies are required to assess the longitudinal association of FKBP5 with obesity and associated co-morbidities in large population-based samples.
- ItemDNA methylation of FKBP5 in South African women : associations with obesity and insulin resistance(BMC (part of Springer Nature), 2020-09-21) Willmer, Tarryn; Goedecke, Julia H.; Dias, Stephanie; Louw, Johan; Pheiffer, CarmenBackground: Disruption of the hypothalamic–pituitary–adrenal (HPA) axis, a neuroendocrine system associated with the stress response, has been hypothesized to contribute to obesity development. This may be mediated through epigenetic modulation of HPA axis-regulatory genes in response to metabolic stressors. The aim of this study was to investigate adipose tissue depot-specific DNA methylation differences in the glucocorticoid receptor (GR) and its co-chaperone, FK506-binding protein 51 kDa (FKBP5), both key modulators of the HPA axis. Methods: Abdominal subcutaneous adipose tissue (ASAT) and gluteal subcutaneous adipose tissue (GSAT) biopsies were obtained from a sample of 27 obese and 27 normal weight urban-dwelling South African women. DNA methylation and gene expression were measured by pyrosequencing and quantitative real-time PCR, respectively. Spearman’s correlation coefficients, orthogonal partial least-squares discriminant analysis and multivariable linear regression were performed to evaluate the associations between DNA methylation, messenger RNA (mRNA) expression and key indices of obesity and metabolic dysfunction. Results: Two CpG dinucleotides within intron 7 of FKBP5 were hypermethylated in both ASAT and GSAT in obese compared to normal weight women, while no differences in GR methylation were observed. Higher percentage methylation of the two FKBP5 CpG sites correlated with adiposity (body mass index and waist circumference), insulin resistance (homeostasis model for insulin resistance, fasting insulin and plasma adipokines) and systemic inflammation (c-reactive protein) in both adipose depots. GR and FKBP5 mRNA levels were lower in GSAT, but not ASAT, of obese compared to normal weight women. Moreover, FKBP5 mRNA levels were inversely correlated with DNA methylation and positively associated with adiposity, metabolic and inflammatory parameters. Conclusions: These findings associate dysregulated FKBP5 methylation and mRNA expression with obesity and insulin resistance in South African women. Additional studies are required to assess the longitudinal association of FKBP5 with obesity and associated co-morbidities in large population-based samples.
- ItemHuman whole genome sequencing in South Africa(Nature, 2021-01) Glanzmann, Brigitte; Jooste, Tracey; Ghoor, Samira; Gordon, Richard; Mia, Rizwana; Mao, Jun; Li, Hao; Charls, Patrick; Douman, Craig; Kotze, Maritha J.; Peeters, Armand V.; Loots, Glaudina; Esser, Monika; Tiemessen, Caroline T.; Wilkinson, Robert J.; Louw, Johan; Gray, Glenda; Warren, Robin M.; Moller, Marlo; Kinnear, CraigThe advent and evolution of next generation sequencing has considerably impacted genomic research. Until recently, South African researchers were unable to access affordable platforms capable of human whole genome sequencing locally and DNA samples had to be exported. Here we report the whole genome sequences of the first six human DNA samples sequenced and analysed at the South African Medical Research Council’s Genomics Centre. We demonstrate that the data obtained is of high quality, with an average sequencing depth of 36.41, and that the output is comparable to data generated internationally on a similar platform. The Genomics Centre creates an environment where African researchers are able to access world class facilities, increasing local capacity to sequence whole genomes as well as store and analyse the data.
- ItemHyperglycemia-induced oxidative stress and heart disease-cardioprotective effects of rooibos flavonoids and phenylpyruvic acid-2-O-β-D-glucoside(BMC (part of Springer Nature), 2017) Dludla, Phiwayinkosi V.; Joubert, Elizabeth; Muller, Christo J. F.; Louw, Johan; Johnson, RabiaDiabetic patients are at an increased risk of developing heart failure when compared to their non-diabetic counter parts. Accumulative evidence suggests chronic hyperglycemia to be central in the development of myocardial infarction in these patients. At present, there are limited therapies aimed at specifically protecting the diabetic heart at risk from hyperglycemia-induced injury. Oxidative stress, through over production of free radical species, has been hypothesized to alter mitochondrial function and abnormally augment the activity of the NADPH oxidase enzyme system resulting in accelerated myocardial injury within a diabetic state. This has led to a dramatic increase in the exploration of plant-derived materials known to possess antioxidative properties. Several edible plants contain various natural constituents, including polyphenols that may counteract oxidative-induced tissue damage through their modulatory effects of intracellular signaling pathways. Rooibos, an indigenous South African plant, well-known for its use as herbal tea, is increasingly studied for its metabolic benefits. Prospective studies linking diet rich in polyphenols from rooibos to reduced diabetes associated cardiovascular complications have not been extensively assessed. Aspalathin, a flavonoid, and phenylpyruvic acid-2-O-β-D-glucoside, a phenolic precursor, are some of the major compounds found in rooibos that can ameliorate hyperglycemia-induced cardiomyocyte damage in vitro. While the latter has demonstrated potential to protect against cell apoptosis, the proposed mechanism of action of aspalathin is linked to its capacity to enhance the expression of nuclear factor (erythroid-derived 2)-like 2 (Nrf2) expression, an intracellular antioxidant response element. Thus, here we review literature on the potential cardioprotective properties of flavonoids and a phenylpropenoic acid found in rooibos against diabetes-induced oxidative injury.
- ItemAn in vitro study on the combination effect of Metformin and N-Acetyl Cysteine against hyperglycaemia-induced cardiac damage(MDPI, 2019-11-21) Johnson, Rabia; Sangweni, Nonhlakanipho F.; Mabhida, Sihle E.; Dludla, Phiwayinkosi V.; Mabasa, Lawrence; Riedel, Sylvia; Chapman, Charna; Mosa, Rebamang A.; Kappo, Abidemi P.; Louw, Johan; Muller, Christo J. F.ENGLISH ABSTRACT: Chronic hyperglycaemia is a major risk factor for diabetes-induced cardiovascular dysfunction. In a hyperglycaemic state, excess production of reactive oxygen species (ROS), coupled with decreased levels of glutathione, contribute to increased lipid peroxidation and subsequent myocardial apoptosis. N-acetylcysteine (NAC) is a thiol-containing antioxidant known to protect against hyperglycaemic-induced oxidative stress by promoting the production of glutathione. While the role of NAC against oxidative stress-related cardiac dysfunction has been documented, to date data is lacking on its beneficial effect when used with glucose lowering therapies, such as metformin (MET). Thus, the aim of the study was to better understand the cardioprotective effect of NAC plus MET against hyperglycaemia-induced cardiac damage in an H9c2 cardiomyoblast model. H9c2 cardiomyoblasts were exposed to chronic high glucose concentrations for 24 h. Thereafter, cells were treated with MET, NAC or a combination of MET and NAC for an additional 24 h. The combination treatment mitigated high glucose-induced oxidative stress by improving metabolic activity i.e. ATP activity, glucose uptake (GU) and reducing lipid accumulation. The combination treatment was as effective as MET in diminishing oxidative stress, lipid peroxidation and apoptosis. We observed that the combination treatment prevented hyperglycaemic-induced cardiac damage by increasing GLUT4 expression and mitigating lipid accumulation via phosphorylation of both AMPK and AKT, while decreasing nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB), as well as protein kinase C (PKC), a known activator of insulin receptor substrate-1 (IRS-1), via phosphorylation at Ser307. On this basis, the current results support the notion that the combination of NAC and MET can shield the diabetic heart against impaired glucose utilization and therefore its long-term protective effect warrants further investigation.
- ItemInflammation and oxidative stress in an obese state and the protective effects of gallic acid(MDPI, 2019) Dludla, Phiwayinkosi V.; Nkambule, Bongani B.; Jack, Babalwa; Mkandla, Zibusiso; Mutize, Tinashe; Silvestri, Sonia; Orlando, Patrick; Tiano, Luca; Louw, Johan; Mazibuko-Mbeje, Sithandiwe E.ENGLISH ABSTRACT: Metabolic complications in an obese state can be aggravated by an abnormal inflammatory response and enhanced production of reactive oxygen species. Pro-inflammatory response is known to be associated with the formation of toxic reactive oxygen species and subsequent generation of oxidative stress. Indeed, adipocytes from obese individuals display an altered adipokine profile, with upregulated expression and secretion of pro-inflammatory cytokines such as tumor necrosis factor alpha (TNF-α) and interleukin (IL-6). Interestingly, natural compounds, including phenolic enriched foods are increasingly explored for their ameliorative effects against various metabolic diseases. Of interest is gallic acid, a trihydroxybenzoic acid that has progressively demonstrated robust anti-obesity capabilities in various experimental models. In addition to reducing excessive lipid storage in obese subjects, gallic acid has been shown to specifically target the adipose tissue to suppress lipogenesis, improve insulin signaling, and concomitantly combat raised pro-inflammatory response and oxidative stress. This review will revise mechanisms involved in the pathophysiological effects of inflammation and oxidative stress in an obese state. To better inform on its therapeutic potential and improvement of human health, available evidence reporting on the anti-obesity properties of gallic acid and its derivatives will be discussed, with emphases on its modulatory effect on molecular mechanisms involved in insulin signaling, inflammation and oxidative stress.
- ItemInhibitory interactions of Aspalathus linearis (Rooibos) extracts and compounds, aspalathin and Z-2-(β-D-glucopyranosyloxy)-3-phenylpropenoic acid, on cytochromes metabolizing hypoglycemic and hypolipidemic drugs(MDPI, 2016-11-12) Patel, Oelfah; Muller, Christo; Joubert, Elizabeth; Louw, Johan; Rosenkranz, Bernd; Awortwe, CharlesRooibos extract, due to its glucose and lipid lowering effects, has potential as a nutraceutical for improvement of metabolic dysfunction. Potential herb-drug interactions as a result of the use of natural products are of increasing concern. Cytochrome P450 enzymes, CYP2C8, CYP2C9, and CYP3A4, are important in the metabolism of hypoglycemic drugs, such as thiazolidinediones (TZDs) and sulfonylureas, and hypocholesterolemic drugs, such as atorvastatin. This study investigated the effects of rooibos extracts, prepared from “unfermented” and “fermented” rooibos plant material and two of the major bioactive compounds, Z-2-(β-d-glucopyranosyloxy)-3-phenylpropenoic acid (PPAG) and aspalathin (ASP), on Vivid® recombinant CYP450 enzymes. Unfermented (GRT) and fermented (FRE) rooibos extracts inhibited the activity of CYP2C8 (7.69 ± 8.85 µg/mL and 8.93 ± 8.88 µg/mL, respectively) and CYP3A4 (31.33 ± 4.69 µg/mL and 51.44 ± 4.31 µg/mL, respectively) based on their respective IC50 concentrations. Both extracts dose- and time-dependently inhibited CYP2C8 activity, but only time-dependently inhibited CYP2C9. CYP3A4 showed concentration-dependent inhibition by ASP, GRT, and FRE at 25, 50, and 100 µg/mL concentrations. ASP, GRT, and FRE time-dependently inhibited CYP3A4 activity with GRT and FRE showing a more potent time-dependent inhibition, comparable to erythromycin. These findings suggest that herb-drug interactions may occur when nutraceuticals containing rooibos extracts are co-administered with hypoglycemic drugs such as TZDs, sulfonylureas, and dyslipidemic drug, atorvastatin.
- ItemIntestinal transport characteristics and metabolism of C-glucosyl dihydrochalcone, aspalathin(MDPI, 2017) Bowles, Sandra; Joubert, Elizabeth; De Beer, Dalene; Louw, Johan; Brunschwig, Christel; Njoroge, Mathew; Lawrence, Nina; Wiesner, Lubbe; Chibale, Kelly; Muller, ChristoInsight into the mechanisms of intestinal transport and metabolism of aspalathin will provide important information for dose optimisation, in particular for studies using mouse models. Aspalathin transportation across the intestinal barrier (Caco-2 monolayer) tested at 1–150 µM had an apparent rate of permeability (Papp) typical of poorly absorbed compounds (1.73 × 10⁻⁶cm/s). Major glucose transporters, sodium glucose linked transporter 1 (SGLT1) and glucose transporter 2 (GLUT2), and efflux protein (P-glycoprotein, PgP) (1.84 × 10⁻⁶ cm/s; efflux ratio: 1.1) were excluded as primary transporters, since the Papp of aspalathin was not affected by the presence of specific inhibitors. The Papp of aspalathin was also not affected by constituents of aspalathin-enriched rooibos extracts, but was affected by high glucose concentration (20.5 mM), which decreased the Papp value to 2.9 × 10⁻⁷ cm/s. Aspalathin metabolites (sulphated, glucuronidated and methylated) were found in mouse urine, but not in blood, following an oral dose of 50 mg/kg body weight of the pure compound. Sulphates were the predominant metabolites. These findings suggest that aspalathin is absorbed and metabolised in mice to mostly sulphate conjugates detected in urine. Mechanistically, we showed that aspalathin is not actively transported by the glucose transporters, but presumably passes the monolayer paracellularly.
- ItemA Lanosteryl triterpene from Protorhus longifolia augments insulin signaling in type 1 diabetic rats(BMC (part of Springer Nature), 2018-10-01) Mabhida, Sihle Ephraim; Johnson, Rabia; Ndlovu, Musawenkosi; Sangweni, Nonhlakanipho Felicia; Louw, Johan; Opoku, Andrew; Mosa, Rebamang AnthonyBackground: A substantial literature supports antidiabetic properties of the lanosteryl triterpene (methyl-3β- hydroxylanosta-9,24-dien-21-oate, RA-3) isolated from Protorhus longifolia stem bark. However, the molecular mechanism(s) associated with the antihyperglycemic properties of the triterpene remained to be explored. The current study aimed at investigating the molecular mechanism(s) through which RA-3 improves insulin signaling in streptozotocin-induced type 1 diabetic rats. Methods: The type 1 diabetic rats were treated daily with a single oral dose of RA-3 (100 mg/kg) for 28 days. The rats were then sacrificed, and blood, skeletal muscle and pancreases were collected for biochemical, protein expression and histological analysis, respectively. Results: Persistently high blood glucose levels in the diabetic control rats significantly increased expression of IRS-1Ser307 while the expression of p-Akt Ser473, p-GSK-3β Ser9, GLUT 4 and GLUT 2 were decreased. However, enhanced muscle insulin sensitivity, which was indicated by a decrease in the expression of IRS-1ser307 with a concomitant increase in the p-AktSer473, p-GSK-3β Ser9, GLUT 4 and GLUT 2 expression were observed in the diabetic rats treated with RA-3. The triterpene-treated animals also showed an improved pancreatic β-cells morphology, along with increased Cpeptide levels. An increase in the levels of serum antioxidants such as catalase, superoxide dismutase, and reduced glutathione was noted in the rats treated with the triterpene, while their serum levels of interleukin-6 and malondialdehyde were reduced. Conclusions: It is apparent that RA-3 is able to improve the insulin signaling in type 1 diabetic rats. Its beta (β)-cells protecting mechanism could be attributed to its ability to alleviate inflammation and oxidative stress in the cells.
- ItemMolecular basis of the anti‑hyperglycemic activity of RA‑3 in hyperlipidemic and streptozotocin‑induced type 2 diabetes in rats(BMC (part of Springer Nature), 2019) Mabhida, Sihle Ephraim; Johnson, Rabia; Ndlovu, Musawenkosi; Louw, Johan; Opoku, Andrew; Mosa, Rebamang AnthonyBackground: Insulin resistance is a hallmark of type 2 diabetes mellitus (T2DM) and the underlying cause of various metabolic changes observed in type 2 diabetic patients. This study investigated the molecular basis of the antihyperglycemic activity of the lanosteryl triterpene (RA-3), from Protorhus longifolia stem bark, in hyperlipidemic and streptozotocin (STZ)-induced T2DM in rats. Methods: The high-fat diet fed (HFD) and STZ-induced T2DM in rat model was used to evaluate the anti-hyperglycemic activity of RA-3. The hyperlipidemic rats received a single intraperitoneal injection of STZ (35 mg/kg body weight) to induce T2DM. The experimental animals received a daily oral single dose of RA-3 (100 mg/kg body) for a period of 28 days, whiles the control group received distilled water only. The animals were euthanized, and skeletal muscle was collected for protein (IRS-1, AKT, GSK and GLUT 4) expression analysis. Western blot confirmed expression of the proteins. Results: Treatment of the diabetic animals with the RA-3 showed marked reduction in fasting plasma glucose levels in comparison to the untreated diabetic group animals. A significant decrease in p-GSK-3β and p-AKT expression was observed, whereas the expression of IRS-1ser307 were increased when compared to the diabetic control group. This effect was ablated upon treatment with RA-3 and this was concomitant to an observed increase in GLUT 4 expression. Conclusions: The results obtained in the present study strongly suggested that the anti-hyperglycemic effect of RA-3 could partly be associated with its ability to improve cellular glucose uptake in muscle tissue from T2DM.
- ItemNon-communicable diseases – a catastrophe for South Africa(ASSAf, 2021-05-28) Samodien, Ebrahim; Abrahams, Yoonus; Muller, Christo; Louw, Johan; Chellan, NireshniENGLISH ABSTRACT: Non-communicable diseases contribute significantly to the disease burden within South Africa. In the most unequal of societies in the world, poverty and socio-economic disparity are amongst the greatest obstacles facing South Africans, impacting heavily on health care. Adverse socio-environmental factors, especially those experienced during early life, can, through neurobiological and epigenetic mechanisms, developmentally programme the outcome of obesity, diabetes, cardiovascular disease and mental health disorders in adulthood. In this narrative review, we describe the social environment experienced by South Africans and discuss the potential contribution of epigenetics to the current and future prevalence of non-communicable diseases. A large part of the population (including 60% of young children) lives in poverty and endures challenging socio-economic environments, due to high unemployment, alcohol and substance abuse, and inter-partner violence. It is imperative that socio-economic factors be considered as risk factors for strategies aimed at reducing or preventing these disorders. If the current situation is left unchecked, the disease incidences could be exacerbated, and be potentially catastrophic for future generations. The consequences can be widespread and can have a direct effect on the future health and economic development of the country. Thus, child and adolescent health requires urgent attention and should be placed at the centre of the healthcare system. Early interventions providing optimum nutrition, a secure environment, together with physical activity and education should be the cornerstones for creating a healthier population for the future.
- ItemPharmacogenomics of amlodipine and hydrochlorothiazide therapy and the quest for improved control of hypertension : a mini review(Springer, 2019) Johnson, Rabia; Dludla, Phiwayinkosi; Mabhida, Sihle; Benjeddou, Mongi; Louw, Johan; February, FaghriENGLISH ABSTRACT: Blood pressure (BP) is a complex trait that is regulated by multiple physiological pathways and include but is not limited to extracellular fluid volume homeostasis, cardiac contractility, and vascular tone through renal, neural, or endocrine systems. Uncontrolled hypertension (HTN) has been associated with an increased mortality risk. Therefore, understanding the genetics that underpins and influence BP regulation will have a major impact on public health. Moreover, uncontrolled HTN has been linked to inter-individual variation in the drugs’ response and this has been associated with an individual’s genetics architecture. However, the identification of candidate genes that underpin the genetic basis of HTN remains a major challenge. To date, few variants associated with inter-individual BP regulation have been identified and replicated. Research in this field has accelerated over the past 5 years as a direct result of on-going genome-wide association studies (GWAS) and the progress in the identification of rare gene variants and mutations, epigenetic markers, and the regulatory pathways involved in the pathophysiology of BP. In this review we describe and enhance our current understanding of how genetic variants account for the observed variability in BP response in patients on first-line antihypertensive drugs, amlodipine and hydrochlorothiazide.