Comparative transcriptomic and proteomic profiling of industrial wine yeast strains
dc.contributor.author | Rossouw, D. | en_ZA |
dc.contributor.author | Van den Dool, A. H. | en_ZA |
dc.contributor.author | Jacobson, D. | en_ZA |
dc.contributor.author | Bauer, Florian | en_ZA |
dc.date.accessioned | 2011-05-15T15:56:31Z | |
dc.date.available | 2011-05-15T15:56:31Z | |
dc.date.issued | 2010 | |
dc.description.abstract | The geno- and phenotypic diversity of commercial Saccharomyces cerevisiae wine yeast strains provides an opportunity to apply the system-wide approaches that are reasonably well established for laboratory strains to generate insight into the functioning of complex cellular networks in industrial environments. We have previously analyzed the transcriptomes of five industrial wine yeast strains at three time points during alcoholic fermentation. Here, we extend the comparative approach to include an isobaric tag for relative and absolute quantitation (iTRAQ)-based proteomic analysis of two of the previously analyzed wine yeast strains at the same three time points during fermentation in synthetic wine must. The data show that differences in the transcriptomes of the two strains at a given time point rather accurately reflect differences in the corresponding proteomes independently of the gene ontology (GO) category, providing strong support for the biological relevance of comparative transcriptomic data sets in yeast. In line with previous observations, the alignment proves to be less accurate when assessing intrastrain changes at different time points. In this case, differences between the transcriptome and proteome appear to be strongly dependent on the GO category of the corresponding genes. The data in particular suggest that metabolic enzymes and the corresponding genes appear to be strongly correlated over time and between strains, suggesting a strong transcriptional control of such enzymes. The data also allow the generation of hypotheses regarding the molecular origin of significant differences in phenotypic traits between the two strains. Copyright © 2010, American Society for Microbiology. All Rights Reserved. | |
dc.description.version | Article | |
dc.identifier.citation | Applied and Environmental Microbiology | |
dc.identifier.citation | 76 | |
dc.identifier.citation | 12 | |
dc.identifier.issn | 992240 | |
dc.identifier.other | 10.1128/AEM.00586-10 | |
dc.identifier.uri | http://hdl.handle.net/10019.1/9892 | |
dc.subject | Alcoholic fermentation | |
dc.subject | Cellular network | |
dc.subject | Comparative approach | |
dc.subject | Data sets | |
dc.subject | Gene ontology | |
dc.subject | In-line | |
dc.subject | Industrial environments | |
dc.subject | Metabolic enzymes | |
dc.subject | Molecular origins | |
dc.subject | On The Go | |
dc.subject | Phenotypic diversity | |
dc.subject | Phenotypic traits | |
dc.subject | Proteomes | |
dc.subject | Proteomic analysis | |
dc.subject | Proteomic profiling | |
dc.subject | Saccharomyces cerevisiae | |
dc.subject | Time points | |
dc.subject | Transcriptional control | |
dc.subject | Transcriptomes | |
dc.subject | Wine yeast | |
dc.subject | Catalysts | |
dc.subject | Cellular neural networks | |
dc.subject | Enzymes | |
dc.subject | Fermentation | |
dc.subject | Genes | |
dc.subject | Industry | |
dc.subject | Ontology | |
dc.subject | Wine | |
dc.subject | Yeast | |
dc.subject | fungal protein | |
dc.subject | proteome | |
dc.subject | alcohol | |
dc.subject | brewing industry | |
dc.subject | commercial species | |
dc.subject | comparative study | |
dc.subject | data set | |
dc.subject | enzyme activity | |
dc.subject | fermentation | |
dc.subject | gene expression | |
dc.subject | genotype | |
dc.subject | hypothesis testing | |
dc.subject | metabolism | |
dc.subject | molecular analysis | |
dc.subject | phenotype | |
dc.subject | proteomics | |
dc.subject | species diversity | |
dc.subject | yeast | |
dc.subject | article | |
dc.subject | biosynthesis | |
dc.subject | chemistry | |
dc.subject | comparative study | |
dc.subject | DNA microarray | |
dc.subject | fermentation | |
dc.subject | gene expression profiling | |
dc.subject | genetics | |
dc.subject | high performance liquid chromatography | |
dc.subject | mass spectrometry | |
dc.subject | microbiology | |
dc.subject | wine | |
dc.subject | yeast | |
dc.subject | Chromatography, High Pressure Liquid | |
dc.subject | Fermentation | |
dc.subject | Fungal Proteins | |
dc.subject | Gene Expression Profiling | |
dc.subject | Industrial Microbiology | |
dc.subject | Mass Spectrometry | |
dc.subject | Oligonucleotide Array Sequence Analysis | |
dc.subject | Proteome | |
dc.subject | Wine | |
dc.subject | Yeasts | |
dc.subject | Lonchocarpus glaucifolius | |
dc.subject | Saccharomyces cerevisiae | |
dc.title | Comparative transcriptomic and proteomic profiling of industrial wine yeast strains | |
dc.type | Article |