Mathematical principles of road congestion pricing

Date
2009
Journal Title
Journal ISSN
Volume Title
Publisher
Operations Research Society of South Africa
Abstract
This paper briefly considers the objectives of road congestion pricing and identifies prerequisites to the successful application of such a pricing scheme. The paper is divided into two sections. In the first section, a mathematical analysis of the constituents of an optimal road congestion price is offered. The eliminated inefficiency loss achieved by the introduction of a congestion levy is usually evaluated by means of an integral involving marginal trip cost, travel demand and average trip cost in two-dimensional (travel time, traffic flow)-space. In this section we show that this loss may, in fact, be evaluated more easily for a general marginal trip cost function and a linear demand function as the difference between the areas of a rectangle (representing the part of road agency revenue that lies below the original trip cost) and a triangle (representing the loss of consumer surplus of the reduced traffic) in (travel time, traffic flow)-space, eliminating the need to use integration. The next section deals with the application of the illustrated mathematical principles and proofs to a hypothetical case study relating to road congestion pricing in Cape Town.
Description
CITATION: Pienaar, W. J. & Nel, J. H. 2009. Mathematical principles of road congestion pricing. ORiON, 25(1):45-51, doi:10.5784/25-1-71.
The original publication is available at http://orion.journals.ac.za
Keywords
Traffic congestion -- Costs -- Cape Town (South Africa), Traffic congestion -- Costs -- Statistical methods
Citation
Pienaar, W. J. & Nel, J. H. 2009. Mathematical principles of road congestion pricing. ORiON, 25(1):45-51, doi:10.5784/25-1-71