Euler Classes and Frobenius Algebras
Date
2019-04
Journal Title
Journal ISSN
Volume Title
Publisher
Stellenbosch : Stellenbosch University
Abstract
ENGLISH ABSTRACT : This thesis investigates the relationship between the handle element of the
De Rham cohomology algebra of a compact oriented smooth manifold, thought
of as a Frobenius algebra, and the Euler class of the manifold. In this way it
gives a complete answer to an exercise posed in the monograph of Kock [5]
(which is based on a paper of Abrams [6]), where one is asked to show that
these two classes are equal. Firstly, an overview of De Rham cohomology,
Thom and Euler classes of smooth manifolds, Poincaré duality, Frobenius
algebras, and their graphical calculus is given. Finally, it is shown that the
handle element and the Euler class are indeed equal for even-dimensional
manifolds. However, they are not equal for odd-dimensional manifolds.
AFRIKAANSE OPSOMMING : Hierdie proefskrif ondersoek die verband tussen die handvatselelement van die De Rham-kohomologie-algebra van ’n kompakte georiënteerde gladde variëteit, beskou as ’n Frobenius-algebra, en die Euler-klas van die variëteit. Op hierdie manier gee dit ’n volledige antwoord op ’n oefening wat in die monografie van Kock [5] gebaseer is (wat gebaseer is op ’n papier van Abrams [6]), waar een gevra word om te wys dat hierdie twee klasse gelyk is. Eerstens word ’n oorsig gegee van De Rham-kohomologie, Thom- en Euler-klasse van gladde manifolds, Frobenius algebras, en hul grafiese notasie word gegee. Ten slotte word getoon dat die handvatsel en die Euler-klas inderdaad gelyk is vie ewe-dimensionele variëteite. Maar hulle is nie gelyk nie vir onewe-dimensionele variëteite nie.
AFRIKAANSE OPSOMMING : Hierdie proefskrif ondersoek die verband tussen die handvatselelement van die De Rham-kohomologie-algebra van ’n kompakte georiënteerde gladde variëteit, beskou as ’n Frobenius-algebra, en die Euler-klas van die variëteit. Op hierdie manier gee dit ’n volledige antwoord op ’n oefening wat in die monografie van Kock [5] gebaseer is (wat gebaseer is op ’n papier van Abrams [6]), waar een gevra word om te wys dat hierdie twee klasse gelyk is. Eerstens word ’n oorsig gegee van De Rham-kohomologie, Thom- en Euler-klasse van gladde manifolds, Frobenius algebras, en hul grafiese notasie word gegee. Ten slotte word getoon dat die handvatsel en die Euler-klas inderdaad gelyk is vie ewe-dimensionele variëteite. Maar hulle is nie gelyk nie vir onewe-dimensionele variëteite nie.
Description
Thesis (MSc)--Stellenbosch University, 2019.
Keywords
De Rham cohomology, Frobenius algebras, Euler classes, Rham, Georges de, Algebraic topology, UCTD