Interpolatory refinable functions, subdivision and wavelets
dc.contributor.advisor | De Villiers, J. M. | |
dc.contributor.author | Hunter, Karin M. | en_ZA |
dc.contributor.other | University of Stellenbosch. Faculty of Science. Dept. of Mathematical Sciences. | |
dc.date.accessioned | 2007-01-19T09:59:05Z | en_ZA |
dc.date.accessioned | 2010-06-01T08:13:52Z | |
dc.date.available | 2007-01-19T09:59:05Z | en_ZA |
dc.date.available | 2010-06-01T08:13:52Z | |
dc.date.issued | 2005-03 | |
dc.description | Thesis (DSc (Mathematical Sciences))--University of Stellenbosch, 2005. | |
dc.description.abstract | Subdivision is an important iterative technique for the efficient generation of curves and surfaces in geometric modelling. The convergence of a subdivision scheme is closely connected to the existence of a corresponding refinable function. In turn, such a refinable function can be used in the multi-resolutional construction method for wavelets, which are applied in many areas of signal analysis. | en_ZA |
dc.format.extent | 1298785 bytes | en_ZA |
dc.format.mimetype | application/pdf | en_ZA |
dc.identifier.uri | http://hdl.handle.net/10019.1/1156 | |
dc.language.iso | en | |
dc.publisher | Stellenbosch : University of Stellenbosch | |
dc.rights.holder | University of Stellenbosch | |
dc.subject | Interpolation | |
dc.subject | Wavelets (Mathematics) | |
dc.subject | Functions | |
dc.subject | Dissertations -- Mathematics | |
dc.subject | Theses -- Mathematics | |
dc.title | Interpolatory refinable functions, subdivision and wavelets | en_ZA |
dc.type | Thesis | en_ZA |