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Summary

Subdivision is an important iterative technique for the efficient generation of curves and

surfaces in geometric modelling. The convergence of a subdivision scheme is closely con-

nected to the existence of a corresponding refinable function. In turn, such a refinable

function can be used in the multi-resolutional construction method for wavelets, which

are applied in many areas of signal analysis.

As an introduction to subdivision, we give in Chapter 1 a survey of some results in corner-

cutting subdivision for curves, and then the following Chapters 2 to 6 are devoted to the

topic of interpolatory subdivision for curves. First, in Chapter 2, after discussing Dubuc–

Deslauriers subdivision, we introduce a general class Aµ,ν of symmetric interpolatory

subdivision schemes with the property of polynomial filling up to a given odd degree

2ν − 1. Also, we show in Theorem 2.7 that any member of Aµ,ν is uniquely expressible

in terms of a finite sequence of Dubuc–Deslauriers schemes.

In Chapter 3, we present two construction methods for convergent schemes in Aµ,ν. The

first method is based on the sampling at the half integers of a finitely supported function

Q with appropriate properties, and the second method uses a Bezout identity containing

a Hurwitz polynomial H.

We proceed to develop, in Section 4.2, and as ultimately stated in Theorem 4.8, a sufficient

condition, consisting of two inequalities, for convergence, which provides an alternative

to a well-known existing condition due to C.A. Micchelli, and which is then shown, in

Section 4.3, to be applicable for certain subclasses of Aµ,ν.

Next, in Chapter 5, we introduce, as an extension of Dubuc–Deslauriers subdivision, yet

another construction method for schemes in Aµ,ν, as based on the sampling at 1
2

of a

certain fundamental interpolant sequence, and for which, as stated in Corollary 5.7, an

efficient computational method is then derived by using the Dubuc–Deslauriers expansion

result of Theorem 2.7. In the setting of splines, we then show that our Theorem 4.8 yields
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Summary

convergence also for a subclass of subdivision schemes not satisfying the abovementioned

Micchelli condition.

All of the above subdivision schemes are based on the availability of a bi-infinite initial

data sequence. Since, in many practical applications, a given finite initial data sequence

can not be extended in a natural way to be bi-infinite, we develop in Chapter 6, for the

special case of Dubuc–Deslauriers subdivision, a modified subdivision scheme which is

equivalent to Dubuc–Deslauriers subdivision away from the boundaries, and in such a

way that the properties of interpolation and polynomial filling are preserved. Finally, in

Chapter 7, we use the results of Chapter 6 to construct boundary-adapted interpolation

wavelets, and then present applications in signature smoothing and image decomposition.
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Opsomming

Subdivisie (of onderverdeling) is ’n belangrike tegniek wat op ’n doeltreffende en vinnige

manier krommes en oppervlakke genereer in geometriese modellering. Die konvergensie

van ’n subdivisieskema is nou verwant aan die bestaan van ’n ooreenstemmende verfynbare

funksie. So ’n verfynbare funksie kan in die multiresolusionele konstruksiemetode van

golfies, wat toegepas word in baie gebiede van seinverwerking, gebruik word.

As inleiding tot subdivisie, gee ons in Hoofstuk 1 ’n oorsig van sommige resultate van

hoeksny subdivisie vir krommes. Hoofstukke 2 tot 6 word gewy aan die onderwerp van

interpolerende subdivisie vir krommes. Eerstens, in Hoofstuk 2, na ’n bespreking van

Dubuc–Deslauriers subdivisie, stel ons ’n algemene klas Aµ,ν van simmetriese interpol-

erende subdivisieskemas, met die eienskap van polinoomvulling tot ’n gegewe onewe graad

2ν− 1, bekend. In Stelling 2.7 wys ons dan dat enige lid van Aµ,ν op ’n unieke manier in

terme van ’n eindige ry Dubuc–Deslauriers skemas uitdrukbaar is.

In Hoofstuk 3 gee ons twee konstruksiemetodes vir konvergente skemas in Aµ,ν. Die eerste

metode is gebaseer op die monstering by die half-heelgetalle van ’n funksie Q met eindige

steungebied en ander toepaslike eienskappe, terwyl die tweede metode gebruik maak van

’n Bezout identiteit wat ’n Hurwitz polinoom H bevat.

Ons gaan voort, in Afdeling 4.2, om ’n voldoende voorwaarde vir konvergensie, soos

uiteindelik in Stelling 4.8 geformuleer, te ontwikkel. Hierdie voorwaarde, wat ’n alternatief

tot die bekende voorwaarde deur C.A. Micchelli is, bestaan uit twee ongelykhede en word

dan in Afdeling 4.3 op sekere subklasse van Aµ,ν suksesvol toegepas.

Volgende, in Hoofstuk 5, stel ons, as ’n uitbreiding van Dubuc–Deslauriers subdivisie, ’n

verdere konstruksiemetode vir skemas in Aµ,ν voor. Hierdie metode is gebaseer op die

monstering by 1
2

van ’n sekere fundamentele interpolant, wat dan, soos geformuleer in

Gevolg 5.7, lei tot ’n doeltreffende berekeningsmetode, waarin gebruik gemaak word van

die Dubuc–Deslauriers uitbreidingsresultaat van Stelling 2.7. In die geval van latfunksies,
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Opsomming

toon ons dan dat Stelling 4.8 konvergensie lewer vir ’n subklas van subdivisieskemas wat

nie aan die bogenoemde Micchelli-voorwaarde voldoen nie.

Al bogenoemde subdivisieskemas is gebaseer op die beskikbaarheid van ’n dubbel-oneindige

aanvanklike datary. Aangesien ’n gegewe eindige datary in baie praktiese toepassings nie

op ’n natuurlike manier na ’n dubbel-oneindige ry uitgebrei kan word nie, ontwikkel ons

in Hoofstuk 6, vir die spesiale geval van Dubuc–Deslauriers subdivisie, ’n rand-aangepaste

subdivisieskema. Hierdie aangepaste subdivisieskema is ekwivalent aan Dubuc–Deslauriers

subdivisie weg van die rante, en behou die interpolasie- en polinoomvullingseienskappe

van Dubuc–Deslauriers naby die rante. Laastens, in Hoofstuk 7, gebruik ons die resul-

tate van Hoofstuk 6 om rand-aangepaste interpolasiegolfies te kontrueer. Toepassings in

handtekeningvergladding en in beelddekomposisie word aangebied.
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Introduction to subdivision

Consider the following simple iterative procedure: For a given sequence c(0) = {c
(0)

j : j ∈ Z}

in the plane, generate a new ‘denser’ sequence c(1) = {c
(1)

j : j ∈ Z} in the plane, where

the odd-indexed elements of the new sequence interpolate the old ones. Alternatively one

could demand that, with Γ (0) and Γ (1) denoting the polygons connecting the points of,

respectively, c(0) and c(1), that Γ (1) “smoothes out” Γ (0) in the sense of corner-cutting.

Subdivision schemes generate a new sequence by taking a linear combination of the old

sequence, in contrast to standard interpolation (or smoothing) procedures which involve

calculating an interpolatory (or smoothing) function and then evaluating the function.

For example if one generates the new sequence using

c
(1)

2j = 1
2

(
c

(0)

j−1 + c
(0)

j

)
,

c
(1)

2j+1 = c
(0)

j ,





j ∈ Z, (1.1)

then the even-indexed elements of the new sequence are generated halfway between the

old ones. This step can of course be repeated indefinitely, roughly ‘doubling’ the number

of points in the sequence at each step. In this case the new sequence fills in or converges

to the polygon Γ (0) connecting the initial sequence c(0) (see Figure 1.1). Thus we obtain,

in the limit, a continuous piecewise linear curve. In general, the existence and smoothness

of such a limit curve depend on the choice of the coefficients of the linear combination.

There is no unique or best way of obtaining the coefficients of the linear combination.

In this chapter, we introduce the general concepts of subdivision schemes and then dis-

cuss choices for these coefficients that have a smoothing effect. A useful and general

1



1.1. Notation and general concepts

(a) Original sequence c(0) and the

polygon Γ (0)

(b) Original sequence c(0), updated

sequence c(1) and the polygon

Γ(1) = Γ (0)

Figure 1.1: Illustration of iterative procedure (1.1)

introduction to subdivision methods can be found in [6].

1.1 Notation and general concepts

We shall denote by N the set of natural numbers, by Z the set of integers, by R the set of

real numbers and by C the set of complex numbers. For the set of nonnegative integers

we write Z+ and for any k ∈ Z+ we use the symbol Zk to denote the set of nonnegative

integers ≤ k, i.e. Zk := {0, 1, . . . , k} and the symbol Nk to denote the set of positive

integers ≤ k, i.e. Nk := {1, 2, . . . , k} .

We write M(Z) for the linear space of bi-infinite real-valued sequences, i.e. a ∈ M(Z) if

a = {aj ∈ R : j ∈ Z}, and use the notation supp(a) = {j : aj 6= 0} to denote the support

of the sequence a. The subspace of M(Z) consisting of those sequences in M(Z) with

finite support will be denoted by M0(Z), i.e. a = {aj : j ∈ Z} ∈M0(Z) if a ∈M(Z), and

supp(a) is a finite set.

Similarly, we write M(R) for the linear space of real-valued functions on R and use the

notation M0(R) for the subspace of M(R) consisting of finitely supported functions in

M(R), i.e. f ∈ M0(R) if f ∈ M(R), and there exists a bounded interval [α, β] such that

f(x) = 0, x 6∈ [α, β]. The subspace of continuous functions in M0(R) will be denoted

2



Chapter 1. Introduction to subdivision

by C0(R).

For a given sequence a ∈ M0(Z), we then generalise the subdivision algorithm implied

by (1.1) by defining the subdivision operator Sa : M(Z) → M(Z) by

(Sac)j :=
∑

k

aj−2kck, j ∈ Z, c ∈M(Z), (1.2)

where we use the convention, here and throughout this thesis, that
∑

k

=
∑

k∈Z

. The

sequence a is then called the mask of the subdivision operator Sa, and the associated

Laurent polynomial

A(z) :=
∑

j

ajz
j, z ∈ C\{0}, (1.3)

is called the mask symbol of the subdivision operator Sa.

For any initial sequence c ∈M(Z), the subdivision scheme associated with the mask

a generates the sequence {c(r) : r ∈ Z+} recursively by

c(0) = c, c(r) = Sac
(r−1), r ∈ N, (1.4)

or, equivalently,

c(0) = c, c(r) = Sr
ac, r ∈ N. (1.5)

Henceforth, for a given mask a ∈ M0(Z), whenever we refer to “the subdivision scheme

Sa”, we shall mean the subdivision scheme (1.2), (1.4).

It should be noted that, whereas the definitions and results on subdivision throughout this

thesis are stated and proved for initial sequences c ∈M(Z), they can easily be extended,

componentwise, to the case of vector-valued initial sequences c. However, for simplicity

of presentation, we restrict ourselves to the case where c ∈M(Z), except possibly in the

graphical examples, were we choose c = {cj : j ∈ Z}, with cj ∈ R2, j ∈ Z.

We denote by `∞(Z) the subspace of bounded sequences in M(Z), i.e. c ∈ `∞(Z) if

c ∈ M(Z), and ||c||∞ := sup
j

|cj| < ∞. Recall that `∞(Z) is a complete normed linear

space with respect to the norm || · ||∞. For D ∈ {M(Z),M(R)}, we define the backward

3



1.1. Notation and general concepts

difference operator ∆ : D → D by (∆c)j = ∆cj = cj − cj−1, j ∈ Z, if D = M(Z) and

by ∆f = f − f(· − 1) if D = M(R). Also, we introduce the symbol ∆∞(Z) to denote the

subspace of M(Z) consisting of those bi-infinite sequences c ∈M(Z) which are such that

∆c ∈ `∞(Z). Note in particular that `∞(Z) is a proper subspace of ∆∞(Z); also, ∆∞(Z)

contains those unbounded sequences c ∈M(Z) that are such that ∆c ∈ `∞(Z).

The following property of the subdivision operator Sa in (1.2) will be needed our subse-

quent work. We use, for x ∈ R, the notation bxc for the largest integer ≤ x, and dxe for

the smallest integer ≥ x.

Proposition 1.1 For a given mask a ∈M0(Z), the subdivision operator Sa, as defined

by (1.2), satisfies

Sac ∈ `
∞(Z), c ∈ `∞(Z).

Proof. Suppose c ∈ `∞(Z), and suppose supp(a) = {M,M+ 1, . . . , N} for some M,N ∈

Z. Then, from (1.2), we have

∣∣∣(Sac)2j

∣∣∣ =
∣∣∣∣∣
∑

k

a2j−2kck

∣∣∣∣∣ =

∣∣∣∣∣

bN/2c∑

k=dM/2e

a2kcj−k

∣∣∣∣∣ ≤ ||c||∞

bN/2c∑

k=dM/2e

|a2k|, j ∈ Z. (1.6)

Similarly, we get

∣∣∣(Sac)2j+1

∣∣∣ ≤ ||c||∞

b(N−1)/2c∑

k=d(M−1)/2e

|a2k+1|, j ∈ Z. (1.7)

With the definition K = max






bN/2c∑

k=dM/2e

|a2k|,

b(N−1)/2c∑

k=d(M−1)/2e

|a2k+1|





, it then follows from (1.6)

and (1.7) that
∣∣∣(Sac)j

∣∣∣ ≤ K ||c||∞ , j ∈ Z.

Hence, Sac ∈ `∞(Z). �

We write C(R) for the linear space of continuous functions on R, and, for k ∈ Z+, we

define Ck(R) := {f ∈ M(R) : f(j) ∈ C(R), j ∈ Zk}, with the convention f(0) = f. Observe

4



Chapter 1. Introduction to subdivision

that C0(R) = C(R). We shall use the symbol C−1(R) to denote the space of piecewise

continuous functions on R.

The concept of convergence for a subdivision scheme is now defined as follows.

Definition 1.2 For a given mask a ∈ M0(Z), we shall call the subdivision scheme Sa

convergent on M ⊂M(Z) if, for every initial sequence c ∈M, there exists a function

Φ ∈ C(R) such that
∣∣∣∣Φ

(
·

2r

)
− c(r)

∣∣∣∣
∞

−→ 0, r −→ ∞. (1.8)

We call Φ the limit function of the subdivision scheme Sa.

Note in the definition above that, for any given x ∈ R, since the dyadic set
{

j

2r : j ∈ Z, r ∈ Z+

}

is dense in R, there exists a sequence {jr : r ∈ Z+} such that jr
2r −→ x, r −→ ∞, and thus

∣∣∣Φ(x) − c
(r)

jr

∣∣∣ ≤
∣∣∣Φ(x) −Φ

(
jr
2r

) ∣∣∣+
∣∣∣Φ
(

jr
2r

)
− c

(r)

jr

∣∣∣ −→ 0+ 0 = 0, r −→ ∞,

from (1.8) and the fact that Φ is continuous at x; hence c
(r)

jr
−→ Φ(x), r −→ ∞.

Closely related to the convergence of subdivision schemes is the concept of a refinable

function, as defined next.

Definition 1.3 A function φ ∈ C(R) is called refinable if there exists a sequence

a ∈M0(Z) such that

φ =
∑

j

ajφ(2 · −j). (1.9)

We call (1.9) the refinement equation, with corresponding refinement mask a.

In the next section we discuss the cardinal B-splines as a family of refinable functions.

1.2 Cardinal B-splines and Lane–Riesenfeld subdivision

In this section we introduce, for m ∈ N, the cardinal B-spline of order m as a finitely

supported function, the integer-shifts of which provide a basis for the cardinal spline

5



1.2. Cardinal B-splines and Lane–Riesenfeld subdivision

space of order m. We then discuss the cardinal B-spline of order m as an example of

a refinable function, with its associated subdivision scheme known in the literature as

Lane–Riesenfeld subdivision [45].

For m ∈ N, we define the cardinal spline space Sm(Z) as the set of all functions

s ∈M(R) which are such that

s
∣∣
[k,k+1)

= pk ∈ πm−1, k ∈ Z,

s ∈ Cm−2(R),





(1.10)

where, for a given k ∈ Z+, the symbol πk denotes the space of polynomials of degree ≤ k.

In order to find a basis for Sm(Z) consisting of the integer shifts of single finitely supported

function, we define the cardinal B-splines Nm of order m ∈ N recursively by

N1(x) =

{
1, x ∈ [0, 1),

0, x 6∈ [0, 1),
(1.11)

Nm =

∫ 1

0

Nm−1(· − t)dt, m ≥ 2. (1.12)

With the truncated power function (·)k
+ ∈M(R) defined, for k ∈ Z+, by

xk
+ =

{
xk, x ≥ 0,

0, x < 0,

with the convention 00 = 1, and the m-th backward difference function defined by ∆mf =

∆(∆m−1f), m ≥ 2, for f ∈M(R), the cardinal B-spline Nm of order m ∈ N satisfies (see

e.g. [8, Chapter 4]) the following properties:

Nm =
1

(m− 1)!
∆m(·)m−1

+ =
1

(m − 1)!

∑

j∈Zm

(−1)j

(
m

j

)
(· − j)m−1

+ ; (1.13)

Nm(· − j) ∈ Sm(Z), j ∈ Z; (1.14)

Nm =
∑

j

a
(m)

j Nm(2 · −j), (1.15)

where the sequence a(m) =
{
a

(m)

j : j ∈ Z

}
∈M0(Z) is defined by

a
(m)

j =
1

2m−1

(
m

j

)
, j ∈ Z, (1.16)

6



Chapter 1. Introduction to subdivision

and where we have adopted the convention that
(

m

j

)
= 0, j 6∈ Zm;

Nm(x) = 0, x 6∈ (0,m) (for m ≥ 2); (1.17)

Nm(x) > 0, x ∈ (0,m) (for m ≥ 2); (1.18)

∑

j

Nm(x− j) = 1, x ∈ R; (1.19)

Nm(x) =
x

m− 1
Nm−1(x) +

m − x

m − 1
Nm−1(x − 1), x ∈ R, (for m ≥ 2); (1.20)

N ′
m(x) = Nm−1(x) −Nm−1(x− 1), x ∈ R, (for m ≥ 3); (1.21)

Nm(x) = Nm(m− x), x ∈ R, (for m ≥ 2). (1.22)

In particular, using (1.13), we obtain

N2(x) =






x, x ∈ (0, 1),

2− x, x ∈ [1, 2),

0, x 6∈ (0, 2).

(1.23)

Also, according to (1.15) and Definition 1.3, we see that the cardinal B-spline Nm is

refinable with respect to the mask a = a(m) ∈ M0(Z) as given by (1.16). Examples for

m = 2, 3, 4 are plotted in Figure 1.2. The set {Nm(· − j) : j ∈ Z} is a basis for Sm(Z)

0 1 2

0

0.2

0.4

0.6

0.8

1

(a) m = 2

0 1 2 3

0

0.2

0.4

0.6

0.8

1

(b) m = 3

0 1 2 3 4

0

0.2

0.4

0.6

0.8

1

(c) m = 4

Figure 1.2: The cardinal B-splines Nm associated with refinement mask a(m).

(see e.g. [50, Theorem 2.1]) in the sense that, for every s ∈ Sm(Z), there exists a unique

sequence c ∈M(Z) such that

s =
∑

j

cjNm(· − j).

Next, we consider the subdivision scheme Sa associated with the mask a(m) in (1.16),

7



1.2. Cardinal B-splines and Lane–Riesenfeld subdivision

which is known as Lane–Riesenfeld subdivision (see e.g. [45] and [50]), and which, accord-

ing to (1.2), (1.4) and (1.16), is given, for an initial sequence c ∈M(Z), by

c(0) = c, c
(r)

j =
1

2m−1

∑

k

(
m

j− 2k

)
c

(r−1)

k , j ∈ Z, r ∈ N. (1.24)

The following convergence result for Lane–Riesenfeld subdivision was proved in [50, The-

orem 2.2].

Theorem 1.4 For any integer m ≥ 2, the Lane–Riesenfeld subdivision scheme (1.24)

converges on ∆∞(Z), with limit function

Φ = Φm =
∑

j

cjNm(· − j). (1.25)

Moreover, the convergence rate is geometric in the sense that, for every initial sequence

c ∈ ∆∞(Z) in (1.24), we have

∣∣∣∣Φm

(
·

2r

)
− c(r)

∣∣∣∣
∞

≤
m− 2

2r
||∆c||∞, r ∈ Z+. (1.26)

Observe in particular from (1.25) in Theorem 1.4 that, if we choose the initial sequence

c = δ = {δj : j ∈ Z} in (1.24), where

δj :=

{
1, j = 0,

0, j 6= 0,
j ∈ Z, (1.27)

we get Φm = Nm; hence the Lane–Riesenfeld subdivision scheme (1.24) yields an efficient

recursive algorithm for the computation of the cardinal B-splines. In fact, the graphs in

Figure 1.2 were generated using this technique.

We proceed to consider Lane–Riesenfeld subdivision schemes for specific values of m.

Setting m = 2 in the Lane–Riesenfeld subdivision scheme (1.24), we obtain the recursive

algorithm

c
(r)

2j =
(
Sac

(r−1)
)

2j
= 1

2

(
c

(r−1)

j−1 + c
(r−1)

j

)
,

c
(r)

2j+1 =
(
Sac

(r−1)
)

2j+1
= c

(r−1)

j ,





j ∈ Z, r ∈ N. (1.28)
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Chapter 1. Introduction to subdivision

Note that (1.28) is identical to the algorithm implied by (1.1), where the odd-indexed

elements of the updated sequence c(r) are simply the elements of the c(r−1), while the

even-indexed elements of the updated sequence c(r) are the midpoints between adjacent

elements of the sequence c(r−1), as illustrated in Figure 1.1.

Now observe from Theorem 1.4 that the limit curve for the subdivision scheme (1.28) is

indeed the piecewise linear continuous function given by Φ2 =
∑

j

cjN2(· − j), and that,

from (1.28) and (1.26), we have Φ2

(
j

2r

)
= c

(r)

j , j ∈ Z, r ∈ Z+, all of which is consistent

with the example drawn in Figure 1.1. Observe also from (1.15) and (1.16) that N2 is

refinable with respect to the mask a = a(2).

Next, setting m = 3 in the Lane–Riesenfeld subdivision scheme (1.24), we obtain the

recursive algorithm

c
(r)

2j =
(
Sac

(r−1)
)

2j
= 1

4

(
c

(r−1)

j + 3c
(r−1)

j−1

)
,

c
(r)

2j+1 =
(
Sac

(r−1)
)

2j+1
= 1

4

(
3c

(r−1)

j + c
(r−1)

j−1

)
,





j ∈ Z, r ∈ N. (1.29)

The algorithm (1.29) was originally described by de Rham [18] as a special case of a

family of similar algorithms. He also proved that the limit curve for this special case is

in C1(R) and composed of quadratic arcs (see also [60]), whereas all the other algorithms

in this family produce limit curves with fractal-like properties. Many years later, Chaikin

analysed the algorithm (1.29) in [7], and it is therefore known as the de Rham–Chaikin

algorithm.

According to Theorem 1.4, the subdivision scheme (1.29) converges to the (piecewise

quadratic) C1-smooth limit function Φ3 =
∑

j

cjN3(· − j) for any initial sequence c ∈

∆∞(Z). In Figure 1.3, a illustration is given for a specific choice of the initial sequence c.

Observe from (1.15) and (1.16) that N3 is refinable with respect to the mask a = a(3).

In [60], Riesenfeld rediscovered that the de Rham–Chaikin algorithm (1.29) has a limit

curve in C1(R) and then in [45] Lane and Riesenfeld introduced the subdivision scheme

9



1.2. Cardinal B-splines and Lane–Riesenfeld subdivision

(a) c(0) (∗) and c(1) (◦) (b) c(1) (∗) and c(2) (◦) (c) c(0) (∗) and c(6) (−) (d) limit curve Φ3

Figure 1.3: Subdivision with mask a(3).

(1.24) , thereby generalising the de Rham–Chaikin algorithm to include algorithms for

generating cardinal splines of all ordersm. We show here the Lane–Riesenfeld subdivision

scheme for m = 4 in (1.24), as given by

c
(r)

2j = 1
8

(
c

(r−1)

j + 6c
(r−1)

j−1 + c
(r−1)

j−2

)
,

c
(r)

2j+1 = 1
8

(
4c

(r−1)

j + 4c
(r−1)

j−1

)
,





j ∈ Z, r ∈ N,

(as illustrated in Figure 1.4); and for m = 5 in (1.24) we get

c
(r)

2j = 1
16

(
c

(r−1)

j + 10c
(r−1)

j−1 + 5c
(r−1)

j−2

)
,

c
(r)

2j+1 = 1
16

(
5c

(r−1)

j + 10c
(r−1)

j−1 + c
(r−1)

j−2

)
,





j ∈ Z, r ∈ N.

(a) c(0) (∗) and c(1) (◦) (b) c(1) (∗) and c(2) (◦) (c) c(0) (∗) and c(6) (◦) (d) limit curve φ4

Figure 1.4: Subdivision with mask a(4).
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Chapter 1. Introduction to subdivision

Since, for any m ∈ N, we have the exact form (1.25) of the limit curve Φm in terms

translates of the cardinal B-spline of order m, we know the exact degree of smoothness

of the limit curve, i.e. Φ ∈ Cm−2(R). Also, (1.11) and (1.20) can be used to derive

explicit expressions for the associated refinable functions, the cardinal B-spline Nm. This

is not the case in general: to our knowledge all other refinable functions are not known

explicitly, and so need to be computed numerically by first solving an eigenvalue problem

to find the values of the refinable function on Z, before using the refinement equation

(1.9) recursively to evaluate the refinable function on the dyadic set
{

j

2r : j ∈ Z, r ∈ N
}

(see e.g. [55, Section 6.3]).

Note in particular for the Lane–Riesenfeld masks, from (1.16), (1.14) and the fact that

Sm(Z) ⊂ Cm−2(R), that both the length of the mask and the regularity of the limit curve

increases with m.

1.3 General positive masks

As an extension of Lane–Riesenfeld subdivision, we consider in this section subdivision

schemes with positive masks a ∈M0(Z) which, for a given n ∈ N, satisfy the conditions

supp(a) = Zn, (1.30)

aj > 0, j ∈ Zn, (1.31)

∑

j

a2j =
∑

j

a2j+1 = 1. (1.32)

The following fundamental result, as proved in [50, Theorem 2.5 and Proposition 2.1] (see

also [53] and [52]), extends the refinement result (1.15), (1.16) to a more general context.

Theorem 1.5 For a given integer n ≥ 2, suppose the sequence a ∈ M0(Z) satisfies the

conditions (1.30), (1.31) and (1.32). Then there exists a refinable function φ ∈ C0(R)

11



1.3. General positive masks

with refinement mask a such that

φ(x) = 0, x 6∈ (0, n), (1.33)

φ(x) > 0, x ∈ (0, n), (1.34)

∑

j

φ(x − j) = 1, x ∈ R. (1.35)

Moreover, φ is the unique function in C0(R) satisfying (1.9) and (1.35).

Convergence of the subdivision scheme Sa for masks satisfying the conditions of Theo-

rem 1.5 was proved in [53] (see also [50, Theorem 2.5]) for initial sequences c ∈ `∞(Z)

in the subdivision scheme (1.4). Here we state a recent generalisation proved in [20,

Theorem 3.1], that also allows for unbounded initial sequences c in (1.4), as long as the

corresponding difference sequence is bounded, i.e. if ∆c ∈ `∞(Z), and which also pro-

vides an explicit bound (in terms of the mask) for the geometric convergence rate of the

subdivision scheme Sa.

Theorem 1.6 Let the mask a ∈M0(Z) satisfy the conditions of Theorem 1.5. Then the

corresponding subdivision scheme Sa is convergent on ∆∞(Z), and has the limit function

Φ ∈ C(R), as given by

Φ =
∑

j

cjφ(· − j), (1.36)

with φ denoting the refinable function of Theorem 1.5. Moreover, the subdivision scheme Sa

converges geometrically in the sense that, with the number ρ = ρ(a) defined by

ρ := 1
2
sup

{
∑

`

|aj−2` − ak−2`| : j, k ∈ Z, |j− k| ≤ n − 1

}

, (1.37)

we have

1

2
≤ ρ ≤ 1− min{a0, a1, . . . , an} < 1, (1.38)

and
∣∣∣∣Φ

(
·

2r

)
− c(r)

∣∣∣∣
∞

≤ ρr(n− 1)||∆c||∞, r ∈ N. (1.39)

12



Chapter 1. Introduction to subdivision

It is interesting to note from Theorem 1.4 that, for the Lane–Riesenfeld subdivision scheme

(1.24), the analogue (1.26) of the estimate (1.39) actually holds with geometric constant

1
2
, which is consistent with the lower bound for ρ in (1.38).

As also noted after Theorem 1.4 in the context of Lane–Riesenfeld subdivision, we see that

the choice c = δ, in Theorem 1.6 yields Φ = φ; hence the subdivision scheme Sa can be

used as a recursive algorithm for the computation of the associated refinable function φ.

However, whereas convergence of a subdivision scheme Sa implies the existence of a cor-

responding refinable function (see e.g. [50, Theorems 2.3 and 2.4], the converse is not

necessarily true: the mere existence of a refinable function is, in general, not sufficient to

ensure the convergence of the associated subdivision scheme (see e.g. [5, Proposition 2.3]

[41], [54]). For example, as shown in [54, Example 2.1], the function φ = N2(
·
3
) is refin-

able with mask symbol A(z) = 1
2

+ z3 + 1
2
z6, z ∈ C, illustrated in Figure 1.5, while the

associated subdivision scheme is not convergent, since c
(r)

j = 0, j 6= 0 mod 3, for all r ∈ N

(cf. Theorem 1.8 in the following section).

0 1 2 3 4 5 6

0

0.2

0.4

0.6

0.8

1

PSfrag replacements

φ(x)

φ(2x) φ(2x + 3) φ(2x + 6)

Figure 1.5: The refinable function φ = N2(
·
3
)

Our next theorem, as proved in [50, Theorem 2.7], gives a result on the regularity (or

minimum degree of smoothness) of the refinable function φ in Theorem 1.5, and therefore

also of the limit curve Φ, as defined by (1.36) in Theorem 1.6.

Recall that a Hurwitz polynomial is defined as a polynomial with all its zeros in the

open left half plane of C. Hence the coefficients of a Hurwitz polynomial are necessarily

13



1.3. General positive masks

of the same sign.

Theorem 1.7 In Theorem 1.5, suppose that, for n ≥ 3, there exists an integer ν ∈ N

and a Hurwitz polynomial C of degree ≥ 1, such that the corresponding mask symbol A,

as given by (1.3), satisfies

A(z) = 2

(
1+ z

2

)ν+1

C(z), z ∈ C. (1.40)

Then φ ∈ Cν(R).

Observe in particular that the conditions on the mask a in Theorem 1.5, together with

(1.3), imply that deg(A) = n, and thus, since deg(C) ≥ 1, we must have ν ≤ n − 2.

For example, for the choice C(z) = 1
4

+ 1
4
z + 1

2
z2 in (1.40), we have from Theorem 1.7

that the regularity of associated refinable function φ increases as the order of zero at

z = −1 increases, i.e. as ν increases in (1.40). The resulting refinable functions plotted in

Figure 1.6 support this fact.

0 1 2 3 4 5 6
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

PSfrag replacements

ν = 1

ν = 2
ν = 3

ν = 4

Figure 1.6: Refinable functions φ with increasing smoothness

Observe from (1.16) and (1.3) that the mask symbol Am corresponding to the Lane–

Riesenfeld subdivision scheme is given by

Am(z) = 2

(
1+ z

2

)m

, z ∈ C. (1.41)

Hence, if m ≥ 3, the conditions of Theorem 1.7 are satisfied with ν = m− 2 and C(z) =

1
2
(1+ z), z ∈ C, so that, in this case, we have the smoothness result φ = Nm ∈ Cm−2(R),

which is consistent with (1.14) and the bottom line of (1.10).
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Chapter 1. Introduction to subdivision

1.4 Nonnegative masks

The positivity condition (1.31) for the existence of a refinable function, as well as for

subdivision convergence, can be weakened to include nonnegative masks, i.e. masks a ∈

M0(Z) that are such that aj ≥ 0, j ∈ Z. It is known (see e.g. [5] or [64]) that for a

nonnegative mask a ∈ M0(Z) and for n ≥ 2, the conditions (1.32), together with the

conditions

supp(a) ⊂ Zn, (1.42)

and

0 < a0, an < 1 and gcd {j : aj 6= 0} = 1, (1.43)

are necessary for the convergence of the corresponding subdivision scheme Sa.

The conjectured sufficiency of conditions (1.32), (1.42) and (1.43) for subdivision conver-

gence is discussed in [5, p. 55] as an important open problem, and much work has been

done since in attempts to prove it (see e.g. [35, 48, 43]). The following theorem, as proved

by Wang in [65, Theorem 1.2], provides a result for a large subclass of such masks.

Theorem 1.8 Suppose, for n ≥ 2, a nonnegative mask a ∈ M0(Z) satisfies the condi-

tions (1.32), (1.42), and 0 < a0, an < 1, and suppose that there exist integers r < p < q

in supp(a) such that gcd(q − r, p− r) = 1 with q − r an even number. Then the associ-

ated subdivision scheme Sa converges on `∞(Z) and there exists a corresponding refinable

function φ ∈ C0(R) with refinement mask a.

For example, the mask symbol

A(z) = 3
20

+ 1
8
z+ 3

4
z3 + 7

10
z4 + 1

8
z5 + 3

20
z6, z ∈ C, (1.44)

satisfies the conditions of Theorem 1.8, with n = 6, r = 0, p = 3 and q = 4. Hence the

associated subdivision scheme Sa converges, as illustrated in Figure 1.7; moreover, there

exists a corresponding continuous, finitely supported refinable function φ, as illustrated

by Figure 1.8.
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1.4. Nonnegative masks

(a) c(0) (∗) and c(1) (◦) (b) c(1) (∗) and c(2) (◦)
(c) c(0) (∗) and c(6) (◦)

(d) Limit curve

Figure 1.7: Subdivision with mask symbol A as given in (1.44)
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Figure 1.8: Refinable function φ associated with mask symbol (1.44)

Subdivision schemes with positive masks are often referred to as ‘corner-cutting’ schemes,

since this is a characteristic shared by all subdivision schemes with positive masks, as

previously illustrated in Figures 1.3 and 1.4. However, in some applications it is important

that the limit curve interpolates the initial data, suggesting the need for interpolatory

subdivision schemes. A rather trivial example of such an interpolatory subdivision scheme

is given by the Lane–Riesenfeld case m = 2 in (1.28).

The subsequent Chapters 2 to 6 of this thesis are devoted to the construction and analysis

of a general class of such interpolatory subdivision schemes.
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The class Aµ,ν of symmetric

interpolatory mask symbols

In this chapter, after introducing the basic concepts of interpolatory subdivision, and

discussing the special case of Dubuc–Deslauriers subdivision, we introduce and analyse a

general class Aµ,ν of symmetric, interpolatory subdivision schemes.

2.1 Preliminaries

We consider here the subclass of subdivision schemes Sa which are interpolatory in the

sense that, in (1.2), we have

(Sac)2j = cj, j ∈ Z, c ∈M(Z). (2.1)

If (2.1) holds, the sequence {c(r) : r ∈ Z+} of real sequences generated by the subdivision

scheme (1.4) satisfies

c
(r)

2j = c
(r−1)

j , j ∈ Z, r ∈ N, (2.2)

that is, at each step of the subdivision scheme the even-indexed elements of the updated

sequence c(r) correspond to the sequence c(r−1), whereas the odd-indexed elements of

the updated sequence c(r) are calculated as some weighted average of a finite number of

neighbouring elements of c(r−1). This is, up to a single integer index shift, reminiscent of

the Lane–Riesenfeld subdivision scheme (1.28) (with m = 2), and which has, according

to (1.41), the mask symbol

A2(z) = 1
2

+ z+ 1
2
z2, z ∈ C. (2.3)

17



2.1. Preliminaries

A necessary and sufficient condition on the mask a for a subdivision scheme to be inter-

polatory is given in the following result.

Proposition 2.1 For a mask a ∈M0(Z), the subdivision scheme Sa is interpolatory in

the sense of (2.1) if and only if

a2j = δj, j ∈ Z, (2.4)

or, equivalently, if and only if the corresponding mask symbol A, as defined by (1.3),

satisfies the identity

A(z) +A(−z) = 2, z ∈ C \ {0}. (2.5)

Proof. Suppose the sequence a ∈ M0(Z) satisfies (2.4). Then, from (1.2), we have for

j ∈ Z that

(Sac)2j =
∑

k

a2j−2k ck =
∑

k

δj−k ck = cj,

thereby yielding (2.1).

If (2.1) holds for all c ∈M(Z), we can choose c = δ, in (2.1) to deduce from (1.2) that

δj =
∑

k

a2j−2k δk = a2j, j ∈ Z

so that (2.4) holds.

It remains to prove the equivalence of (2.4) and (2.5). First use (1.3) to rewrite the

left-hand side of (2.5), for z ∈ C \ {0}, as

A(z) +A(−z) =
∑

j

aj z
j +

∑

j

aj(−z)
j

=

[
∑

j

a2j z
2j +

∑

j

a2j+1 z
2j+1

]
+

[
∑

j

a2j z
2j −

∑

j

a2j+1 z
2j+1

]
,

and thus

A(z) +A(−z) = 2
∑

j

a2j z
2j, z ∈ C \ {0}. (2.6)
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Chapter 2. The class Aµ,ν of symmetric interpolatory mask symbols

Now suppose that (2.4) holds. Then (2.6) gives

A(z) +A(−z) = 2
∑

j

δj z
2j = 2, z ∈ C \ {0},

so that (2.5) holds. If (2.5) holds, then (2.6) implies

2 = A(z) +A(−z) = 2
∑

j

a2j z
2j, z ∈ C \ {0},

and thus
∑

j

a2j z
2j = 1, z ∈ C \ {0},

thereby yielding (2.4). �

Observe that the Lane–Riesenfeld mask with m = 2 and its associated mask symbol A2

as given in (2.3) is a shifted version of an interpolatory mask, in the sense that the mask

symbol A(z) = z−1A2(z), z ∈ C \ {0}, satisfies the interpolatory condition (2.5).

2.2 Dubuc–Deslauriers subdivision

In this section, as was done in [21], we derive Dubuc–Deslauriers subdivision as an opti-

mally local polynomial filling subdivision scheme which is also interpolatory.

To this end, for a given n ∈ N, consider the problem of finding a minimally supported

mask a such that the (2n− 1)-th degree polynomial filling property

∑

k

aj−2kp(k) = p
(

j

2

)
, j ∈ Z, p ∈ π2n−1, (2.7)

holds.

For this purpose we introduce the Lagrange fundamental polynomials `n,k ∈ π2n−1, for

k ∈ Jn := {−n + 1, . . . , n}, as defined by

`n,k =
∏

k 6=j∈Jn

· − j

k − j
, k ∈ Jn, (2.8)
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2.2. Dubuc–Deslauriers subdivision

so that

`n,k(j) = δk,j :=

{
1, j = k,

0, j 6= k,
k, j ∈ Jn, (2.9)

and
∑

k∈Jn

p(k) `n,k = p, p ∈ π2n−1. (2.10)

Note, from (2.9) and (1.27), that δk,0 = δk, k ∈ Z.

Setting j = 0 and j = 1 in (2.7), and then using (2.10) and (2.9), we obtain

a−2j +
∑

k 6∈Jn

a−2k `n,j(k) = δj,

a1−2j +
∑

k 6∈Jn

a1−2k `n,j(k) = `n,j

(
1
2

)
,






j ∈ Jn,

and therefore a necessary condition for a minimally supported mask a to satisfy (2.7) is

a−2j = δj, j ∈ Z, (2.11a)

a1−2j = `n,j

(
1
2

)
, j ∈ Jn, (2.11b)

a1−2j = 0, j 6∈ Jn. (2.11c)

The choice (2.11) is also sufficient to fulfill (2.7). In fact, if j = 2m, m ∈ Z, then, for

p ∈ π2n−1, equation (2.11a) implies

∑

k

aj−2kp(k) =
∑

k

a2m−2kp(k) =
∑

k

a2kp(m− k) = p(m) = p
(

j

2

)
,

whereas, if j = 2m+ 1, m ∈ Z, then (2.11b),(2.11c) and (2.10) yield

∑

k

aj−2kp(k) =
∑

k

a2k+1p(m− k)

=

n−1∑

k=−n

`n,−k

(
1
2

)
p(m− k)

=
∑

k∈Jn

p(m+ k)`n,k

(
1
2

)
= p

(
m + 1

2

)
= p

(
j

2

)
.

Hence the subdivision scheme corresponding to the mask (2.11), as introduced by Dubuc

and Deslauriers in [31, 28], is indeed a minimally supported mask sequence for which (2.7)
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Chapter 2. The class Aµ,ν of symmetric interpolatory mask symbols

holds. We call, for a given n ∈ N, the mask a = dn = {dn,j : j ∈ Z} given by

dn,2j = δj, j ∈ Z,

dn,1−2j = `n,j

(
1
2

)
, j ∈ Jn,

dn,j = 0, |j| ≥ 2n,






(2.12)

the Dubuc–Deslauriers mask of order n, and write

Dn(z) =
∑

j

dn,jz
j, z ∈ C \ {0}, (2.13)

for the associated Dubuc–Deslauriers mask symbol.

Observe that, since the two conditions (2.11a) and (2.4) are identical, we can conclude

from Proposition 2.1 that the subdivision scheme with mask (2.11) is interpolatory. Ac-

cordingly, we call the interpolatory subdivision scheme Sdn based on the choice a = dn,

the Dubuc–Deslauriers subdivision scheme of order n.

Note that, by construction, the mask a = dn satisfies the polynomial filling property

(2.7), i.e.
∑

k

dn,j−2kp(k) = p
(

j

2

)
, j ∈ Z, p ∈ π2n−1, (2.14)

and that the choice a = dn is a mask of shortest possible length satisfying (2.7).

We now derive an explicit expression for the Dubuc–Deslauriers mask dn. To this end,

we first calculate, for k ∈ Jn,

∏

k 6=j∈Jn

(
1
2

− j
)

=
∏

k 6=j∈Jn

(
1− 2j

2

)

=
2

1− 2k

∏

j∈Jn

(
1− 2j

2

)

=
1

22n−1

1

1− 2k

n−1∏

j=−n

(2j+ 1)

=
(−1)n−1

24n−3

1

2k− 1

[
(2n− 1)!

(n− 1)!

]2

, (2.15)

whereas
∏

k 6=j∈Jn

(k− j) = (−1)n+k(n− 1+ k)!(n − k)!,
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2.3. An existence and convergence result

from which, together with (2.12) and (2.8), we then deduce that the Dubuc–Deslauriers

mask dn has the explicit formulation

dn,2j = δj, j ∈ Z,

dn,1−2j =
n

24n−3

(
2n− 1

n

)
(−1)j+1

2j− 1

(
2n− 1

n− j

)
, j ∈ Jn,

dn,j = 0, |j| ≥ 2n.






(2.16)

For example, using (2.13) and (2.16), we obtain, for z ∈ C \ {0}, the formulas

D1(z) = 1
2

(
z−1 + 2+ z

)
, (2.17)

D2(z) = 1
16

(
−z−3 + 9z−1 + 16+ 9z− z3

)
, (2.18)

D3(z) = 1
256

(
3z−5 − 25z−3 + 150z−1 + 256+ 150z− 25z3 + 3z5

)
. (2.19)

Also, from (2.16), we observe that the mask coefficients {dn,j : j ∈ Z} are symmetric, in

the sense that

dn,j = dn,−j, j ∈ Z. (2.20)

Next, in Section 2.3 below, we proceed to show that the Dubuc–Deslauriers subdivision

scheme Sdn belongs to a general class of convergent interpolatory subdivision schemes.

2.3 An existence and convergence result

Following [51, Theorem 4.1 and Corollary 4.1], we next present a set of sufficient conditions

on a mask symbol A for the existence of a corresponding interpolatory solution φ ∈ C0(R)

of the refinement equation (1.9), and for the convergence of the associated interpolatory

subdivision scheme Sa.

If a Laurent polynomial A satisfies A(z) = A(z−1), z ∈ C \ {0}, we call A a symmetric

Laurent polynomial. We then define the degree of a symmetric Laurent polynomialA(z) =
∑

j

aj z
j, z ∈ C \ {0}, as the smallest integer m ∈ Z+ for which it holds that aj = 0,

|j| ≥ m + 1.

22



Chapter 2. The class Aµ,ν of symmetric interpolatory mask symbols

Theorem 2.2 For a given n ∈ N, let the mask a ∈M0(Z) be such that the mask symbol

A defined by (1.3) has degree 2n− 1, and satisfies the following properties:

A(z) +A(−z) = 2, z ∈ C \ {0}, (2.21)

A(−1) = 0, (2.22)

A(eix) > 0, −π < x < π. (2.23)

Then there exists a refinable function φ ∈ C(R), with refinement mask a, such that

φ(x) = 0, x 6∈ (−2n+ 1, 2n− 1); (2.24)

φ(j) = δj, j ∈ Z; (2.25)

∑

j

φ(x− j) = 1, x ∈ R. (2.26)

Moreover, the corresponding subdivision scheme Sa, as given by (1.2) and (1.4), is inter-

polatory in the sense of (2.1), and converges on M(Z), where the limit function Φ ∈ C(R)

is given by

Φ =
∑

j

cjφ(· − j), (2.27)

and where

c
(r)

j = Φ
(

j

2r

)
, j ∈ Z, r ∈ Z+. (2.28)

Remark: Laurent polynomials which are real-valued on the unit circle in C can be

shown to be necessarily symmetric. Hence our positivity condition (2.23) above implies

that Theorem 2.2 admits only symmetric Laurent polynomials, in which case the degree

is well defined.

Proof. For the proof of the existence of a refinable function φ ∈ C0(R) satisfying the

properties (2.24) – (2.26), we refer to [51, Theorem 4.1] or [38, Theorem 4.2].

Observing from (2.21) and Proposition 2.1 that the subdivision scheme Sa is interpolatory

in the sense of (2.1), it therefore remains to prove that the subdivision scheme Sa is
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2.3. An existence and convergence result

convergent on M(Z). To this end, it will suffice to prove that the function Φ ∈ C(R)

satisfies (2.28) for every initial sequence c ∈M(Z) in (1.4), since (1.8) then holds trivially

for every c ∈M(Z).

If r = 0, then (2.28) follows from (2.25) and (2.27). For r ≥ 1, we use the refinability

(1.9) of φ, together with (1.2), (1.4) and (2.25) to deduce, for k ∈ Z, that

Φ
(

j

2r

)
=

∑

k

ckφ
(

j

2r − k
)

=
∑

k

ck

[
∑

`

a`φ
(

j

2r−1 − 2k− `
)
]

=
∑

k

ck

∑

`

a`−2kφ
(

j

2r−1 − `
)

=
∑

`

(Sac)`φ
(

j

2r−1 − `
)

=
∑

`

c
(1)

` φ
(

j

2r−1 − `
)

= · · · =
∑

`

c
(r)

` φ(j − `) = c
(r)

j ,

thereby proving (2.28). �

Observe that (2.21) and (2.22) imply

A(1) = 2. (2.29)

We call a refinable function φ ∈ C(R) an interpolatory refinable function if it also

satisfies the interpolatory condition (2.25).

Remarks:

(a) As opposed the “corner-cutting” subdivision schemes of Chapter 1, convergent in-

terpolatory subdivision schemes have, according to (2.28), the property that for

each r ∈ Z+, the sequence c(r) lies entirely on the limit curve and therefore “fills

up” the limit curve Φ as r increases.

(b) In general the existence of a refinable function does not guarantee the convergence

of the associated subdivision scheme, see e.g. [5, 41, 54]. Here however, for a mask

which is such that its symbol A satisfies (2.21), the proof of the convergence of the
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Chapter 2. The class Aµ,ν of symmetric interpolatory mask symbols

subdivision scheme Sa is based solely on the existence of an interpolatory refinable

function φ. We can conclude that for interpolatory subdivision schemes, the exis-

tence of an interpolatory refinable function is a necessary and sufficient condition

for the convergence of the associated subdivision scheme.

The above observation is consistent with the result [5, Proposition 2.3] that if a

function φ ∈ C0(R) is L∞ stable, in the sense that there exists a constant A > 0,

such that

A ||c||∞ ≤
∣∣∣
∣∣∣
∑

j

cjφ(· − j)
∣∣∣
∣∣∣
∞
, c ∈ `∞(Z), (2.30)

and refinable with refinement mask a, then the associated subdivision scheme Sa is

convergent. The fact that our interpolatory refinable functions above indeed satisfy

the stability result (2.30) follows from the result [42, Theorem 5.1] according to

which (2.30) is equivalent to the linear independence condition

∑

j

cjφ(· − j) = 0 implies cj = 0, j ∈ Z, c ∈ `∞(Z),

which in our case is directly deducible from the interpolatory condition (2.25).

Following the argument introduced in [51], our next result shows that Theorem 2.2 can

be used to prove the convergence of the Dubuc–Deslauriers subdivision scheme.

Theorem 2.3 For n ∈ N, the Dubuc–Deslauriers subdivision scheme Sdn, with mask dn

as in (2.12), is convergent on M(Z), and the limit function Φ = ΦD
n is given by

ΦD
n =

∑

j

cjφ
D
n (· − j).

Moreover, the Dubuc–Deslauriers refinable function φD
n ∈ C0(R) satisfies the properties

φD
n =

∑

j

dn,jφ
D
n (2 · −j);

φD
n (x) = 0, x 6∈ (−2n+ 1, 2n− 1); (2.31)

φD
n (j) = δj, j ∈ Z; (2.32)

∑

j

φD
n (x − j) = 1, x ∈ R.
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2.3. An existence and convergence result

Proof. According to Theorem 2.2, it will suffice to prove that the choice A = Dn satisfies

the properties (2.21), (2.22) and (2.23).

The top line of (2.12) and Proposition 2.1 show that (2.21) holds. Next, choosing p(x) = 1,

x ∈ R in (2.14), we find that

∑

k

dn,j−2k = 1, j ∈ Z, (2.33)

and thus the choice a = dn satisfies the sum conditions (1.32), so that also (2.22) holds.

Finally, we use formulas proved in [51, Lemma 3.1], according to which

Dn(eix) = 2

∫ x

π

(sinω)2n−1 dω

∫ 2π

π

(sinω)2n−1 dω

, x ∈ R, (2.34)

and thus

Dn(eix) =
(2n− 1)!

22n−2
[
(n − 1)!

]2
∫π

x

(sinω)2n−1 dω > 0, −π < x < π, (2.35)

to deduce that (2.23) is also satisfied. �

In [28, Theorem 6.2] the authors used, in contrast to (2.35), a Rolle-type argument to

conclude that the choice A = Dn, as given by (2.12) and (2.13), satisfies the condition

(2.23) for any n ∈ N.

We call the refinable function φD
n the Dubuc–Deslauriers refinable function. For

the analysis of the regularity (or smoothness) class of the Dubuc–Deslauriers refinable

functions, which is outside the scope of this thesis, we refer to [28, Chapter 7; see in

particular Theorem 7.11].

For example, with the mask a = d2, as implied by (2.13) and (2.18), the corresponding

refinable function φD
2 is plotted, using Dubuc–Deslauriers subdivision with initial sequence

c = δ, in Figure 2.1. Also, the convergence of Dubuc–Deslauriers subdivision with n = 2

is illustrated in Figure 2.2.

26



Chapter 2. The class Aµ,ν of symmetric interpolatory mask symbols

−3 −2 −1 0 1 2 3
−0.2
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1

Figure 2.1: Dubuc–Deslauriers refinable function φD
2

(a) c(0) (∗) and c(1) (◦) (b) c(1) (∗) and c(2) (◦) (c) c(0) (∗) and c(6) (–) (d) limit curve ΦD
2

Figure 2.2: Illustration of the Dubuc–Deslauriers subdivision scheme Sd2
.

2.4 The general class Aµ,ν

The Dubuc–Deslauriers mask dn satisfies the (2n−1)-th degree polynomial filling property

(2.14). Also, since (2.20) holds, the corresponding mask symbolDn is a symmetric Laurent

polynomial: Dn(z) = Dn(z−1), z ∈ C \ {0}; and, as follows from the top line of (2.16) and

Proposition 2.1, we also have Dn(z) +Dn(−z) = 2, z ∈ C \ {0}, i.e., the mask symbol Dn

determines an interpolatory subdivision scheme. These observations motivate our next

definition, which was first introduced in [22].

Definition 2.4 For µ ∈ Z+ and ν ∈ N, we say that a Laurent polynomial A, as given

by (1.3), and with degree at most 2(µ + ν) − 1, determines a symmetric interpolatory
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2.4. The general class Aµ,ν

subdivision scheme Sa of accuracy 2ν− 1 if it satisfies

A(z) = A(z−1), z ∈ C \ {0}, (2.36)

A(z) +A(−z) = 2, z ∈ C \ {0}, (2.37)

and
∑

k

aj−2kp(k) = p( j

2
), j ∈ Z, p ∈ π2ν−1. (2.38)

We denote the class of all such Laurent polynomials by Aµ,ν.

Observe in particular that

A0,ν = {Dν}, ν ∈ N, (2.39)

which follows from the fact, as established in Section 2.2, that, by construction, the

Dubuc–Deslauriers mask symbolDn is the unique symmetric Laurent polynomial of lowest

possible degree such that the associated mask dn satisfies the polynomial filling property

(2.38), with ν = n.

Also note that, by choosing the polynomial p in (2.38) as p(x) = 1, x ∈ R, we obtain

∑

k

aj−2k = 1, j ∈ Z, (2.40)

which, in turn, holds if and only if the sum conditions (1.32) hold. Therefore, if A ∈ Aµ,ν,

then

A(1) = 2, A(−1) = 0. (2.41)

Hence every mask symbol A ∈ Aµ,ν has a zero at −1, and, moreover, satisfies the sum

conditions (1.32).

Our next result shows that the polynomial reproduction property (2.38) can be replaced

by an equivalent condition on the order of the zero at −1 of the symbol A. For j ∈ Z+,

we use the notation A(j) to denote the jth derivative of the Laurent polynomial A, where

A(0) = A.
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Chapter 2. The class Aµ,ν of symmetric interpolatory mask symbols

Proposition 2.5 For a mask a ∈ M0(Z), suppose ν ∈ N, and suppose the Laurent

polynomial A defined by (1.3) is such that the interpolatory condition (2.37) holds. Then

the mask a satisfies the polynomial filling property (2.38) if and only if

A(j)(−1) = 0, j ∈ Z2ν−1. (2.42)

Proof. Since (2.37) and Proposition 2.1 give a2j = δj, j ∈ Z, we see that the condition

(2.38) is equivalent to the condition

∑

k

a2k+1p(j− k) = p(j+ 1
2
), j ∈ Z, p ∈ π2ν−1. (2.43)

It therefore remains to prove that (2.43) holds if and only if (2.42) holds.

Since a2j = δj, j ∈ Z, we see from (1.3) that A(z) = 1 +
∑

k

a2k+1z
2k+1, z ∈ C \ {0}, and

thus

A(j)(−1) = δj + (−1)j+1
∑

k

qj(2k+ 1)a2k+1, j ∈ Z2ν−1, (2.44)

where, for x ∈ R,

q0(x) = 1, qj(x) =
∏

`∈Zj−1

(x − `), j ∈ N2ν−1. (2.45)

Observe that qj ∈ πj, j ∈ Z2ν−1. Hence, if we define

pj = qj(−2 · +1+ 2j), j ∈ Z2ν−1, (2.46)

then also pj ∈ πj, j ∈ Z2ν−1. Moreover,

A(j)(−1) = δj + (−1)j+1
∑

k

pj(j− k)a2k+1, j ∈ Z2ν−1, (2.47)

and

pj(j+
1
2
) = qj(0) = δj, j ∈ Z2ν−1, (2.48)

from (2.45).
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Suppose (2.43) holds. Then, since pj ∈ πj ⊂ π2ν−1, j ∈ Z2ν−1, we find from (2.47) and

(2.48) that, for any integer j ∈ Z2ν−1,

A(j)(−1) = δj + (−1)j+1
∑

k

pj(j− k)a2k+1

= δj + (−1)j+1pj(j+
1
2
) = δj[1+ (−1)j+1] = 0,

thereby proving that (2.42) holds.

Conversely, suppose (2.42) holds. Then, from (2.44), we have

∑

k

qj(2k+ 1)a2k+1 = (−1)jδj, j ∈ Z2ν−1. (2.49)

Suppose now p ∈ π2ν−1, and fix j ∈ Z. From (2.45), we see that {q` : ` ∈ Z2ν−1} is a

basis for π2ν−1. Hence, from (2.46), we deduce that {p`(· − j+ `) : ` ∈ Z2ν−1} is a basis

for π2ν−1. Thus there exists a coefficient sequence {αj,` : ` ∈ Z2ν−1} ⊂ R such that

p =
∑

`∈Z2ν−1

αj,` p`(· − j+ `). Using (2.46) and (2.49), we obtain

∑

k

a2k+1p(j− k) =
∑

k

a2k+1

∑

`∈Z2ν−1

αj,` p`

(
(j− k) − j+ `

)

=
∑

k

a2k+1

∑

`∈Z2ν−1

αj,` p`(−k + `)

=
∑

k

a2k+1

∑

`∈Z2ν−1

αj,` q`

(
− 2(−k+ `) + 1+ 2`

)

=
∑

`∈Z2ν−1

αj,`

∑

k

a2k+1 q`(2k+ 1)

=
∑

`∈Z2ν−1

αj,` (−1)`δ` = αj,0. (2.50)

But, from (2.48), we have that

p(j+ 1
2
) =

∑

`∈Z2ν−1

αj,` p`

(
j+ 1

2
− j+ `

)

=
∑

`∈Z2ν−1

αj,` p`

(
`+ 1

2

)
=

∑

`∈Z2ν−1

αj,` δ` = αj,0. (2.51)

It follows from (2.50) and (2.51) that (2.43) indeed holds. �
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Note that from (1.3), the symmetry condition (2.36) has the equivalent formulation

aj = a−j, j ∈ Z, (2.52)

and the condition deg(A) ≤ 2(µ+ ν) − 1 is equivalent to the condition

aj = 0, j 6∈ {−2(µ+ ν) + 1, . . . , 2(µ+ ν) − 1}. (2.53)

It follows, using also Proposition 2.5, that the class Aµ,ν can, equivalently to Definition 2.4,

be defined by the properties (2.53), (2.52), (2.37) and (2.42).

Generalising the Dubuc–Deslauriers result of [21, Theorem 2.1], we now establish further

properties of the refinable function associated with a mask symbol in Aµ,ν.

Theorem 2.6 For µ ∈ Z+ and ν ∈ N, suppose A ∈ Aµ,ν is such that there exists an

associated refinable function φ ∈ C0(R), and such that φ is interpolatory in the sense of

(2.25). Then φ also satisfies the properties

∑

j

p(j)φ(· − j) = p, p ∈ π2ν−1; (2.54)

φ = φ(−·); (2.55)

φ
(

j

2

)
= aj, j ∈ Z. (2.56)

If, moreover, for n = µ+ ν, we have the finite support property (2.24), then also

φ
(
2n − 1− 2−m

(
n− 3

2
− k
) )

= 0, m, k ∈ Z+. (2.57)

Proof. To prove (2.54), suppose ` ∈ Z2ν−1, k ∈ Z and r ∈ Z+. We shall prove that

∑

j

j`φ
(

k
2r − j

)
=
(

k
2r

)`
, (2.58)

which then implies (2.54), since the set
{

k
2r : k ∈ Z, r ∈ Z+

}
is dense in R, and φ is a

finitely supported continuous function on R.

Noting that (2.58) is an immediate consequence of (2.25) if r = 0, we assume next that

r ≥ 1. Then, using consecutively the refinability (1.9) of φ, the polynomial filling property

31



2.4. The general class Aµ,ν

(2.38) and the interpolatory property (2.25) of φ, we get

∑

j

j`φ
(

k
2r − j

)
=

∑

j

j`
∑

m

amφ
(

k
2r−1 − 2j−m

)

=
∑

m

[
∑

j

am−2j j
`

]
φ
(

k
2r−1 −m

)

= 1
2`

∑

m

m`φ
(

k
2r−1 −m

)
= · · · =

(
1
2`

)r ∑

m

m`φ(k −m) =
(

k
2r

)`
,

thereby completing the proof of (2.58).

Similarly, the symmetry (2.55) of φ will be proved if we can show that, for k ∈ Z and

r ∈ Z+,

φ
(

k
2r

)
= φ

(
− k

2r

)
. (2.59)

For r = 0, (2.59) follows from the interpolatory property (2.25) of φ, whereas for r = 1,

it follows from the refinability (1.9) of φ, the symmetry (2.52) of the mask a, and (2.25),

that, for k ∈ Z,

φ
(
−k

2

)
=

∑

j

ajφ(−k−j) =
∑

j

a−jφ(−k+j) =
∑

j

ajφ(−k+j) =
∑

j

ajφ(k−j) = φ
(

k
2

)
.

For r ≥ 2, we use the refinability of φ, together with (1.2), (2.52) and (2.25), to deduce

that

φ
(
− k

2r

)
=

∑

j

ajφ
(
− k

2r−1 − j
)

=
∑

j

a−jφ
(
− k

2r−1 + j
)

=
∑

j

ajφ
(
− k

2r−1 + j
)

=
∑

j

aj

[
∑

`

a`φ
(
− k

2r−2 + 2j− `
)
]

=
∑

j

aj

[
∑

`

a−`φ
(
− k

2r−2 + 2j+ `
)
]

=
∑

j

aj

[
∑

`

a`φ
(
− k

2r−2 + 2j+ `
)
]
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Chapter 2. The class Aµ,ν of symmetric interpolatory mask symbols

=
∑

`

[
∑

j

a`−2jaj

]
φ
(
− k

2r−2 + `
)

=
∑

`

(Saa)`φ
(
− k

2r−2 + `
)

...

=
∑

`

(
Sr−1

a a
)

`
φ(−k + `) = (Sr−1

a a)k, (2.60)

A similar argument shows that also φ
(

k
2r

)
= (Sr−1

a a)k, k ∈ Z, which, together with

(2.60), proves (2.59) for r ≥ 2.

Property (2.56) is an immediate consequence of the refinability (1.9) and the interpolatory

property (2.25) of φ.

Finally, as was done in [21, Theorem 2.1], we prove (2.57) by induction. For m = 0,

property (2.57) follows from (2.56) and the fact that supp(a) ⊂ [−2n + 1, 2n− 1], since

deg(A)≤ 2n − 1. To advance the inductive hypothesis from m to m + 1, we use the

refinability of φ and the finite support property of a to deduce that, for k ∈ Z+,

φ
(
2n− 1− 2−(m+1)

(
n− 3

2
− k
) )

=
∑

j

aj φ
(
4n− 2− 2−m

(
n − 3

2
− k
)

− j
)

=

4n−2∑

j=0

a2n−1−jφ
(
2n− 1− 2−m

(
n− 3

2
− [k+ 2mj]

) )
,

thereby completing our inductive proof. �

Remarks:

(a) The refinability of φ and equation (2.56) imply

φ =
∑

j

φ
(

j

2

)
φ(2 · −j). (2.61)

(b) The symmetry (2.55) of φ and (2.57) imply that

φ
(

− 2n+ 1+ 2−m
(
n − 3

2
− k
) )

= 0, m, k ∈ Z+. (2.62)
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2.4. The general class Aµ,ν

(c) For k ≥ n − 1, (2.57) and (2.62) hold because the argument of φ falls outside its

support interval [−2n+1, 2n−1], while for k ∈ Zn−2, the argument falls within the

support. This, in turn, implies that, for n = µ+ν ≥ 2, the refinable function φ has

an infinite number of zeros within its support and that these zeros are clustered more

densely towards the edges of the support, as illustrated for the Dubuc–Deslauriers

refinable function φD
3 with the associated mask symbol D3 ∈ A0,3 in Figure 2.3.

−5 0 5
−0.2

0

0.2

0.4

0.6

0.8

1

(a) φD
3 with φD

3 (x) = 0, x 6∈ (−5, 5)

2 2.5 3 3.5 4 4.5 5
−0.01

−0.005

0

0.005

0.01

0.015

0.02

(b) φD
3 on [2, 5]

3 3.5 4 4.5 5
−1.5

−1

−0.5

0

0.5

1
x 10

−3

(c) φD
3 on [3, 5]

4 4.2 4.4 4.6 4.8 5
−15

−10

−5

0

5
x 10

−6

(d) φD
3 on [4, 5]

Figure 2.3: The clustered zeros of the refinable function φD
3

(d) Since for n ∈ N, the Dubuc–Deslauriers mask symbol Dn is in A0,n, we have from

Theorems 2.6 and 2.3 that the corresponding refinable function φD
n satisfies the

polynomial reproduction property (2.54), i.e.

∑

j

p(j)φD
n (· − j) = p, p ∈ π2n−1, (2.63)

and is symmetric, i.e.

φD
n (−·) = φD

n . (2.64)

(e) Apart from the regularity result [5, Proposition 2.5 and Remark 2.6] (see also [51,

Theorem 2.2]), not much is known about the regularity (smoothness) class of the
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Chapter 2. The class Aµ,ν of symmetric interpolatory mask symbols

refinable function φ of Theorem 2.6. It remains an interesting open problem to

investigate this issue.

2.5 The Dubuc–Deslauriers expansion of A ∈ Aµ,ν

Our result below, as was first established in [22], gives us a convenient representation for

the class Aµ,ν of mask symbols in terms of Dubuc–Deslauriers mask symbols.

Theorem 2.7 For µ ∈ Z+, ν ∈ N, a Laurent polynomial A belongs to the class Aµ,ν if

and only if there exists a unique sequence {tj, j ∈ Zµ} ⊂ R, with
∑

j∈Zµ

tj = 1, such that

A =
∑

j∈Zµ

tjDν+j, (2.65)

and with {Dn : n ∈ N} denoting the Dubuc–Deslauriers mask symbols as given by (2.12)

and (2.13).

Proof. Suppose A ∈ Aµ,ν. The symmetry (2.36) and interpolatory property (2.37) of

the symbol A allow us to uniquely associate the Laurent polynomial A with the vector

(a1, a3, . . . , a2(ν+µ)−1) ∈ Rν+µ. For a fixed ` ∈ Zν−1, we now choose p = p` = (−2 · +1)2`

in (2.38) to deduce that

∑

k

a2k+1

(
k+ 1

2

)2`
=

∑

k

a1−2k

(
−k + 1

2

)2`
=
1

22`

∑

k

a1−2kp`(k) =
1

22`
p`

(
1
2

)
= δ`.

(2.66)

But, from (2.52), we also have

∑

k

a2k+1

(
k+ 1

2

)2`
=

∑

k∈Zµ+ν−1

a2k+1

(
k + 1

2

)2`
+

−1∑

k=−µ−ν

a2k+1

(
k + 1

2

)2`

=
∑

k∈Zµ+ν−1

a2k+1

(
k + 1

2

)2`
+

−1∑

k=−µ−ν

a−2k−1

(
k + 1

2

)2`

=
∑

k∈Zµ+ν−1

a2k+1

(
k + 1

2

)2`
+

∑

k∈Zµ+ν−1

a2k+1

(
−k − 1

2

)2`

= 2
∑

k∈Zµ+ν−1

a2k+1

(
k + 1

2

)2`
. (2.67)
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Combining (2.66) and (2.67), we find that the conditions

∑

k∈Zν+µ−1

a2k+1

(
k+ 1

2

)2`
= 1

2
δ`, ` ∈ Zν−1, (2.68)

are satisfied by the vector (a1, a3, . . . , a2(ν+µ)−1) ∈ Rν+µ.

We proceed to rewrite the homogeneous system of linear equations for ` ∈ Nν−1 in (2.68) as

a matrix equation, and then use the concepts of rank and null space to prove our theorem.

To this end, we define xk =
(
k + 1

2

)2
, k ∈ Zν+µ−1, and observe that the points xk are

distinct, with xk 6= 0, k ∈ Zν+µ−1. Hence the (ν−1)×(ν+µ) matrix X = (x`,k)
k=0,...,ν+µ−1
`=1,...,ν−1 ,

where x`,k = (xk)
`, is, according to a standard result for Vandermonde matrices with

distinct points, of rank (ν − 1). It follows that the null space N (X) of X has dimension

(µ+ 1).

According to the (ν−1) homogeneous equations in (2.68), i.e. for ` ∈ Nν−1, we deduce that

the vector (a1, a3, . . . , a2(ν+µ)−1) ∈ Rν+µ is an element of N (X). Moreover, since Dν+j ∈

Aµ,ν, j ∈ Zµ, we see that the vectors (dν+j,1, dν+j,3, . . . , dν+j,2(ν+j)−1, 0, . . . , 0) ∈ Rν+µ, j ∈

Zµ, all belong to the nullspace N (X). Now note that the vectors

(dν+j,1, dν+j,3, . . . , dν+j,2(ν+j)−1, 0, . . . , 0), j ∈ Zµ, form a linearly independent set in Rµ+ν,

since, for every j ∈ Zµ, Dν+j is of exact degree (2(ν+ j) − 1), as follows from the explicit

formulas (2.16). Hence, the coefficient sequences associated with the Laurent polynomials

Dν+j, j ∈ Zµ, form a basis for the nullspace N (X), and consequently there exist unique

real numbers tj, j ∈ Zµ, so that (2.65) holds. Hence, from (2.65), (1.3) and (2.13), we

have

a2k+1 =
∑

j∈Zµ

tjdν+j,2k+1, k ∈ Zν+µ−1,

and thus, using (2.68) for ` = 0, together with (2.33) and (2.20), we find that

1
2

=
∑

k∈Zν+µ−1

a2k+1 =
∑

j∈Zµ

tj
∑

k∈Zν+µ−1

dν+j,2k+1 = 1
2

∑

j∈Zµ

tj,

and thus
∑

j∈Zµ

tj = 1.
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Chapter 2. The class Aµ,ν of symmetric interpolatory mask symbols

Conversely, suppose the Laurent polynomial A is given by (2.65), where
∑

j∈Zµ

tj = 1. Then

(2.65) and (2.20) yield

A
(
z−1
)

=
∑

j∈Zµ

tjDν+j

(
z−1
)

=
∑

j∈Zµ

tjDν+j(z) = A(z), z ∈ C \ {0},

so that A satisfies (2.36), whereas

A(z) +A(−z) =
∑

j∈Zµ

tj

[
Dν+j(z) +Dν+j(−z)

]
= 2

∑

j∈Zµ

tj = 2, z ∈ C \ {0},

from the top line of (2.12), together with Proposition 2.1, thereby showing that A also

satisfies (2.37).

Finally, suppose p ∈ π2ν−1. Since (2.65), (1.3) and (2.13) yield

aj =
∑

k∈Zµ

tkdν+k,j, j ∈ Z,

we get, for j ∈ Z, and using (2.14), that

∑

k

aj−2kp(k) =
∑

k


∑

`∈Zµ

t`dν+`,j−2k


p(k)

=
∑

`∈Zµ

t`

[
∑

k

dν+`,j−2kp(k)

]

=
[∑

`∈Zµ

t`

]
p
(

j

2

)
= p

(
j

2

)
,

thereby showing that a also satisfies the polynomial filling property (2.38). It follows that

A ∈ Aµ,ν. �

We now proceed in Propositions 2.8 and 2.9 below to identify two subclasses of Aµ,ν

that satisfy the conditions of Theorem 2.2, and for which we are therefore guaranteed

the existence of a refinable function and the convergence of the associated subdivision

scheme Sa.

Proposition 2.8 For µ ∈ Z+, ν ∈ N, suppose that the Laurent polynomial A belongs to

the class Aµ,ν and, moreover, is such that, in the Dubuc–Deslauriers expansion (2.65) of
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2.5. The Dubuc–Deslauriers expansion of A ∈ Aµ,ν

Theorem 2.7, we have

tj ≥ 0, j ∈ Zµ. (2.69)

Then the conditions of Theorem 2.2 are satisfied with n = ν+ µ.

Proof. From (2.65), (2.35) and (2.69), we see that A has the property A(z) ≥ 0, |z| = 1,

with equality if and only if z = −1. Hence A satisfies (2.22) and (2.23). Since A also

satisfies the interpolatory condition (2.37), so that (2.21) holds, we conclude that A

satisfies the conditions of Theorem 2.2 with n = ν+ µ. �

For the proof our next result, we are indebted to Tomas Sauer.

Proposition 2.9 For µ ∈ Z+, ν ∈ N, suppose the Laurent polynomial A ∈ Aµ,ν has a

coefficient sequence a ∈M0(Z) in (1.3) satisfying

a2j−1

{
> 0, j ∈ Jν+µ,

= 0, j 6∈ Jν+µ.
(2.70)

Then A satisfies the conditions of Theorem 2.2 with n = ν+ µ.

Proof. Since A ∈ Aµ,ν, it follows from (1.3) and (2.21) that A(z) = 1+ Ã(z), z ∈ C\ {0},

where

Ã(z) =
∑

j∈Jν+µ

a2j−1z
2j−1, z ∈ C \ {0}. (2.71)

Since, as noted before in (2.40), the condition (2.38) implies

∑

j

a2j−1 = 1, (2.72)

we deduce from (2.41) that Ã has the property Ã(1) = 1. Using (2.71) and (2.52), we

then obtain, for x ∈ R,

Ã(eix) =
∑

j∈Jµ+ν

a2j−1e
ix(2j−1)

=

0∑

j=−µ−ν+1

a2j−1e
ix(2j−1) +

∑

j∈Nµ+ν

a2j−1e
ix(2j−1)
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=
∑

j∈Nµ+ν

a−2j+1e
−ix(2j−1) +

∑

j∈Nµ+ν

a2j−1e
ix(2j−1)

=
∑

j∈Nµ+ν

a2j−1e
−ix(2j−1) +

∑

j∈Nµ+ν

a2j−1e
ix(2j−1)

=
∑

j∈Nµ+ν

a2j−1

[
e−ix(2j−1) + eix(2j−1)

]

= 2
∑

j∈Nν+µ

a2j−1 cos(2j− 1)x. (2.73)

In particular, (2.73) shows that Ã(eix) is real for x ∈ R, and according to (2.70), and the

symmetry (2.52) of a, we conclude that, for x ∈ R, we have

|Ã(eix)| ≤ 2
∑

j∈Nν+µ

a2j−1 =
∑

j

a2j−1 = 1, x ∈ R, (2.74)

from (2.72).

Moreover, from (2.73), (2.70) and (2.74), x ∈ R satisfies the equation Ã(eix) = −1 if and

only if for every j ∈ Nν+µ we have that cos(2j−1)x = −1, i.e. if and only if x = (2k+1)π,

k ∈ Z. Since also A(z) = 1 + Ã(z), z ∈ C \ {0}, it then follows that A(z) ≥ 0 for |z| = 1,

with equality if and only if z = −1, thereby proving that A satisfies the conditions of

Theorem 2.2 with n = µ+ ν. �

For any given µ ∈ Z+ and ν ∈ N, we can construct a mask symbol A ∈ Aµ,ν using the

Dubuc–Deslauriers expansion (2.65) of Theorem 2.7 which, moreover, has a convergent

corresponding subdivision scheme Sa if tj ≥ 0, j ∈ Z, by virtue of Proposition 2.8 or

aj > 0, j ∈ Jµ+ν, by virtue of Proposition 2.9. In the next section we develop two other

construction techniques for A ∈ Aµ,ν, which similarly yield convergent interpolatory

subdivision schemes Sa.
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Two classes of convergent

subdivision schemes from Aµ,ν

In this chapter we present two general methods, as were first introduced in [22], of generat-

ing a Laurent polynomial A ∈ Aµ,ν associated with a convergent, symmetric interpolatory

subdivision scheme. The first method is based on the sampling at half integers of a given

symmetric function Q ∈ C0(R) with a certain polynomial reproducing property, and

the second one depends on solving a Bezout identity associated with a given symmetric

Hurwitz polynomial H of even positive degree and with a zero at z = −1.

3.1 The generating function Q

Following [22], we start with a continuous function Q ∈ C0(R), and then define the mask

aj ∈M0(Z) by

aj =






δj, j even,

Q
(

j

2

)
, j odd.

(3.1)

To ensure that the corresponding mask symbol A belongs to the class Aµ,ν, we demand

that Q satisfies

Q(x) = 0, x 6∈ (−ν− µ, ν+ µ); (3.2)

Q = Q(−·); (3.3)

∑

j

p(j)Q(·− j) = p, p ∈ π2ν−1. (3.4)

The following result then holds.
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3.1. The generating function Q

Theorem 3.1 For µ ∈ Z+, ν ∈ N, suppose the function Q ∈ C0(R) satisfies the three

properties (3.2), (3.3) and (3.4). Then, with the mask a ∈ M0(Z) defined by (3.1), the

associated mask symbol A defined by (1.3) belongs to the class Aµ,ν.

Proof. According to (1.3), (3.1) and (3.2), we have that A has degree at most 2(µ+ν)−1.

Moreover, (2.36) and (2.37) are immediate consequences of (3.1) and (3.3). It remains to

prove that the polynomial reproduction property (2.38) holds.

Suppose therefore that p ∈ π2ν−1. If j = 2n, n ∈ Z, we have, from the top line of (3.1),

∑

k

aj−2kp(k) =
∑

k

a2n−2kp(k) = p(n) = p( j

2
).

If j = 2n+ 1, n ∈ Z, we have

∑

k

aj−2kp(k) =
∑

k

a2n+1−2kp(k) =
∑

k

p(k)Q(n+ 1
2

− k) = p(n+ 1
2
) = p( j

2
),

by virtue of (3.4). Hence (2.38) is satisfied. �

If, in addition to (3.2), (3.3) and (3.4), Q is a fundamental interpolant, i.e.

Q(j) = δj, j ∈ Z, (3.5)

and is refinable, then it is also a refinable function corresponding to the mask (3.1) defined

above. Indeed, if

Q =
∑

j

qjQ(2 · −j),

then the condition (3.5) implies qj = Q
(

j

2

)
, j ∈ Z, and thus q = a (cf. (2.56) in

Theorem 2.6). This observation provides some motivation for the choice of the mask

sequence described in (3.1).

In Sections 3.2 and 3.4 below, we present two admissible choices for the function Q.
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3.2 Choosing Q as a centered cardinal B-spline

As in [22], our first choice of Q is the centered cardinal B-spline of even order. The next

theorem proves that this choice not only satisfies the conditions (3.2), (3.3) and (3.4), and

is therefore valid in the context of Theorem 3.1, but also yields a convergent symmetric

interpolatory subdivision scheme.

Theorem 3.2 For m ∈ N, the Laurent polynomial A defined by (1.3), (3.1), with the

choice

Q = N2m(m+ ·), (3.6)

belongs to the class Am−1,1 and satisfies the conditions of Theorem 2.2 with n = m.

Proof. According to Theorem 3.1, it will suffice to prove that the choice (3.6) for Q

satisfies the three conditions (3.2), (3.3) and (3.4), with µ = m− 1 and ν = 1.

From (3.6) and (1.17) we see that (3.2) holds with µ = m − 1 and ν = 1. Also, (1.22)

gives

N2m(m+ ·) = N2m(m− ·), (3.7)

and thus, we see for j ∈ Z, from (3.6), that

Q(−·) = N2m(m− ·) = N2m(m+ ·) = Q,

and thus Q satisfies (3.3).

It remains to prove the identity

∑

j

jN2m(x+m− j) = x, x ∈ R, (3.8)

which, together with the fact that, from (1.19),

∑

j

N2m(x+m − j) = 1, x ∈ R,

will then prove that (3.4) holds with ν = 1.
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3.2. Choosing Q as a centered cardinal B-spline

To this end, we first note, from (1.14) and (1.23) that the function F ∈ C(R) defined by

F =
∑

j

jN2(· + 1− j)

satisfies F ∈ S2(R) and F(k) = k, k ∈ Z, and thus F(x) = x, x ∈ R, since the function F

is a piecewise linear polynomial with breakpoints at the integers. Hence (3.8) holds for

m = 1.

If m ≥ 2, we define the function G ∈ S2m(Z) by

G(x) =
∑

j

jN2m(x+m− j) − x, x ∈ R. (3.9)

Now we use the formula (1.21) for the derivative of a cardinal B-spline to obtain, for

x ∈ R,

G ′(x) =
∑

j

j
[
N2m−1(x+m− j) −N2m−1(x +m− j− 1)

]
− 1,

=
∑

j

jN2m−1(x+m− j) −
∑

j

(j− 1)N2m−1(x+m − j) − 1,

=
∑

j

N2m−1(x+m− j) − 1 = 0,

from (1.19), and thus

G ′(x) = 0, x ∈ R. (3.10)

If we can show that

G(0) = 0, (3.11)

then it would follow from (3.10) that G(x) = 0, x ∈ R, which, together with (3.9), would

then imply that (3.8) also holds for m ≥ 2 and our proof will be complete. To this end,

we now use the definition (3.9) of G, together with (1.17), and (3.7), to obtain

G(0) =
∑

j

jN2m(m− j)

=

m−1∑

j=−m+1

jN2m(m− j)

=

−1∑

j=−m+1

jN2m(m− j) +
∑

j∈Nm−1

jN2m(m− j)
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=
∑

j∈Nm−1

(−j)N2m(m+ j) +
∑

j∈Nm−1

jN2m(m− j)

= −
∑

j∈Nm−1

jN2m(m− j) +
∑

j∈Nm−1

jN2m(m− j) = 0,

thereby proving the desired result (3.11).

Finally, we appeal to (3.1), (3.6) and (1.18) to deduce that the conditions of Proposi-

tion 2.9 are satisfied with µ = m − 1 and ν = 1, from which it then follows that the

conditions of Theorem 2.2 are satisfied. �

For example, with m = 2, we have Q = N4(2+ ·) in (3.6), so that if we choose the mask

a as in (3.1), we obtain the mask symbol

A(z) =
1

48

(
z−3 + 23z−1 + 48+ 23z+ z3

)
, z ∈ C \ {0}. (3.12)

The associated refinable function φ is plotted in Figure 3.1 and the convergent subdivision

scheme with mask symbol A is illustrated in Figure 3.2.

−3 −2 −1 0 1 2 3

0

0.2

0.4

0.6

0.8

1

Figure 3.1: The refinable function φ with mask symbol (3.12).

In the paper [46, Section 3], the authors proved existence and convergence for the non-

interpolatory mask a ∈M0(Z) defined, according to [46, equation (3.6)], by aj = Nm

(
j

2

)
,

j ∈ Z, which is different from, but related to, the interpolatory mask defined by (3.1),

(3.6).
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3.3. The generating Hurwitz polynomial H

(a) c(0) (∗) and c(1) (◦) (b) c(1) (∗) and c(2) (◦) (c) c(0) (∗) and c(6) (–) (d) limit curve

Figure 3.2: Subdivision with mask symbol (3.12).

3.3 The generating Hurwitz polynomial H

Following [22], our second general method for computing a convergent symmetric inter-

polatory subdivision scheme in Aµ,ν, is based on a given Hurwitz polynomial H satisfying

certain additional conditions.

We shall rely on the following two propositions from [22] concerning Bezout identities.

Proposition 3.3 Suppose, for n ∈ N, that H =
∑

j∈Z2n

hj(·)
j is a Hurwitz polynomial of

even degree 2n. Then there exists a unique polynomial G =
∑

j∈Z2n−2

gj(·)
j of even degree

2n− 2, such that the Bezout identity

H(z)G(z) −H(−z)G(−z) = z2n−1, z ∈ C, (3.13)

is satisfied. Moreover, the coefficients of G have the alternating sign property

(−1)n+j+1gj > 0, j ∈ Z2n−2. (3.14)

Proof. To prove the existence of a unique polynomial G in π2n−1 satisfying the Bezout

identity (3.13), we use a method similar to the one that was employed in the proof of [24,

Theorem 5].
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Chapter 3. Two classes of convergent subdivision schemes from Aµ,ν

Since H is a Hurwitz polynomial, the two polynomials H and H(−·) have no common

factors, and thus, according to a standard result in polynomial algebra, there exist two

polynomials U and V such that

H(z)U(z) +H(−z)V(z) = 1, z ∈ C. (3.15)

Using, for a function f : C → C, the notation f− for the function f−(z) = f(−z), z ∈ C, it

then follows from (3.15) that WHU+WH−V = W, where the polynomial W is defined by

W(z) = z2n−1, z ∈ C. Denote by Q and R the unique polynomials, with R ∈ π2n−1, such

that WV = QH + R. But then HM +H−R = W, where the polynomial M is defined by

M = WU+QH−. Hence deg(M) = deg(W −H−R) − deg(H) ≤ (4n− 1) − 2n = 2n− 1,

i.e., M ∈ π2n−1. Suppose now that M̃, R̃ ∈ π2n−1 are such that HM̃ + H−R̃ = W, and

define K = M − M̃ and L = R̃ − R, so that HK = H−L, with K, L ∈ π2n−1. Since H

and H− have no common factors, and H has degree 2n, we deduce that K = L = 0, i.e.,

M and R are the unique polynomials in π2n−1 such that HM + H−R = W. Since also

H−M− + HR− = W− = −W, and thus, (H)(−R−) + (H−)(−M−) = W, with M−, R− ∈

π2n−1, we deduce that M = −R−, or, equivalently, R = −M−. Hence, with the definition

G = −R−, we have shown that G is the unique polynomial in π2n−1 such that (3.13) holds.

Recalling the fact that H is a polynomial of even degree 2n, we see that (3.13) does not

allow G to have odd degree, hence G ∈ π2n−2.

Next, to prove (3.14), we first note from (3.13) that the coefficients of G are determined

by solving the linear system

∑

k∈Z2n−2

h2j+1−kgk = 1
2
δn−1,j, j ∈ Z2n−2. (3.16)

Now define the matrix H by

H = (Hjk), Hjk = h2j+1−k, j, k ∈ Z2n−2,

which, since H is a Hurwitz polynomial, and according to the result [50, Lemma 2.4], is

invertible.
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3.3. The generating Hurwitz polynomial H

Using the notation

H

(
r1, . . . , rp
c1 . . . , cp

)
, p ∈ N2n−2,

for the determinant of the submatrix ofH formed by rows r1, . . . , rp and columns c1, . . . , cp,

as well as the definition {k+ Nn} = {k+ 1, k+ 2, . . . , k+n} for n ∈ N and k ∈ Z, we next

apply Cramer’s rule to (3.16) to obtain the formula

gk = (−1)n+k+11

2

H

(
r1, . . . , r2n−2

ck,1, . . . , ck,2n−2

)

det(H)
, k ∈ N2n−2, (3.17)

where

r` =

{
`, ` ∈ Nn−1,

`+ 1 ` ∈ {n − 1+ Nn−1},

and

ck,` =

{
`, ` ∈ Nk

`+ 1 ` ∈ {k + N2n−2−k}.

Specialising the result [50, Lemma 2.4], we conclude that the two determinants in (3.17)

are positive, thereby proving the desired result (3.14), as well as the fact that deg(G) =

2n− 2. �

We shall say that a polynomial p of degree n, as defined by p(z) =
∑

j∈Zn

pjz
j, z ∈ C, is

a symmetric polynomial if pn−j = pj, j ∈ Zn, or, equivalently, if zn p
(
z−1
)

= p(z),

z ∈ C\{0}. Since, for a symmetric polynomial p with deg(p) = n, we must have p(0) 6= 0,

we deduce that the zeros of a symmetric polynomial p occur in reciprocal pairs, i.e. for

z0 ∈ C\{0} we have p(z0) = 0 if and only if p
(
z−1

0

)
= 0. Hence, if a symmetric polynomial

p of degree n is such that p(−1) = 0 and p(1) 6= 0, and if we denote the order of zero at

z = −1 by ν ∈ N, then it must be true that n and ν are either both even, or both odd.

The following specialisation of Proposition 3.3 can now be proved.

Proposition 3.4 Suppose, in Proposition 3.3, we choose H as a symmetric polynomial

with only negative zeros, and with H(−1) = 0. Then G is a symmetric polynomial satis-

fying

G(z) 6= 0, |z| = 1. (3.18)
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Chapter 3. Two classes of convergent subdivision schemes from Aµ,ν

Proof. From the Bezout identity (3.13), as well as the symmetry of the polynomial H,

we have, for z ∈ C \ {0}, that

H(z)
[
z2n−2G

(
z−1
) ]

−H(−z)
[
(−z)2n−2G

(
−z−1

) ]

= z4n−2
[
H
(
z−1
)
G
(
z−1
)

−H
(
−z−1

)
G
(
−z−1

) ]

= z4n−2 z−2n+1 = z2n−1,

and thus, from the uniqueness result in Proposition 3.3, it follows that z2n−2G
(
z−1
)

=

G(z), z ∈ C \ {0}, i.e. G is a symmetric polynomial.

Noting in particular from (3.14) that

(−1)nG(−1) > 0, (3.19)

we finally refer to [37, Lemmas 2.3 and 2.4] (see also [38, Theorem 4.3]) for the proof of

(3.18). �

The result of Proposition 3.4 allows us, as was done in [22], to prove the following theorem.

Theorem 3.5 In Proposition 3.4, suppose that, for ν ∈ Nn, the polynomial H has a zero

of order 2ν at z = −1. Then the Laurent polynomial A defined by

A(z) = 2z−2n+1H(z)G(z), z ∈ C \ {0}, (3.20)

belongs to the class An−ν,ν, and satisfies the conditions of Theorem 2.2.

Proof. First, note from (3.20) that deg(A) = 2n − 1. Moreover, the symmetry of the

polynomials H and G ensure that the Laurent polynomial A in (3.20) is symmetric in the

sense of (2.36).

Next we observe from (3.20) and (3.13) that A also satisfies the interpolatory condition

(2.37). Since H has a zero of order 2ν at z = −1, it follows from (3.20) and (3.19) that

A also satisfies the condition (2.42), so that we can deduce from Proposition 2.5 that the

polynomial filling property (2.38) holds. Hence A ∈ An−ν,ν.
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3.3. The generating Hurwitz polynomial H

Finally, we conclude from (3.20), (2.41), together with the hypothesis that H has only

negative zeros, and (3.18), that A satisfies the positivity condition (2.23). Hence A

satisfies all the conditions of Theorem 2.2. �

Remark: Observe that the case ν = n in Theorem 3.5 yields the Hurwitz polynomial

H(z) = (1+ z)2n, z ∈ C,

with the resulting Laurent polynomial A, as defined by (3.20), belonging to the class A0,n,

so that, from (2.39), we have here that A = Dn, the Dubuc–Deslauriers mask symbol as

given explicitly by (2.13), (2.16). Theorem 3.5 therefore provides an alternative proof to

the one in Theorem 2.3, as based on (2.34) and (2.35), to show that A = Dn satisfies the

positivity condition (2.23), and therefore also all the conditions of Theorem 2.2.

As a second example we choose n = 2 and the Hurwitz polynomial H in Theorem 3.5 as

H(z) = (1+ z)2(2+ z)(1+ 2z), z ∈ C,

so that ν = 1. The unique polynomial G of degree 2 satisfying the Bezout identity (3.13)

is then given by

G(z) = −
1

180

(
2− 9 z+ 2 z2

)
, z ∈ C,

and the resulting Laurent polynomial A ∈ A1,1, according to (3.20), has the formulation

A(z) =
1

90

(
− 4 z−3 + 49 z−1 + 90+ 49 z− 4 z3

)
, z ∈ C \ {0}. (3.21)

The corresponding refinable function φ of Theorem 2.2 is plotted in Figure 3.3(a) and

the associated convergent subdivision scheme Sa is illustrated in Figure 3.4.

Note that, although the refinable function φ in Figure 3.4(a) appears to satisfy φ(x) = 0,

x 6∈ (−2, 2), we see from (2.24) in Theorem 2.2, that φ(x) = 0, x 6∈ (−3, 3) and from (2.57)

in Theorem 2.6, together with (2.62), that φ has clustered zeros towards the boundaries

of its support interval (−3, 3), as illustrated in Figure 3.4(b) and (c).
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Figure 3.3: The refinable function φ with mask symbol (3.21)

(a) c(0) (∗) and c(1) (◦) (b) c(1) (∗) and c(2) (◦) (c) c(0) (∗) and c(6) (–) (d) limit curve

Figure 3.4: Subdivision with the mask symbol (3.21)

In [46], the authors considered the mask symbol A defined by (3.20), with, for M ∈ Z+

and an integer m ≥ 3, the specific choice H(z) = 2
(

1+z
2

)m+2M
Em(z), z ∈ C, in (3.13),

where Em is the Euler–Frobenius polynomial of degree m − 2, as defined (see e.g. [61,

Theorem 2.1]) by

Em(z) =
∑

j∈Zm−2

Nm(j+ 1)zj, z ∈ C, (3.22)

where, from (1.13), we have

Nm(j+ 1) =
1

(m− 1)!

∑

k∈Zj

(−1)k

(
m

k

)
(j+ 1− k)m−1, j ∈ Zm−2 (m ≥ 2). (3.23)

Our approach has the advantage of also proving the existence of the corresponding refin-

able function φ ∈ C(R).

In the following section, we choose Q as a fundamental interpolant and then show that
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3.4. Choosing Q as a fundamental interpolant

this construction technique is equivalent to a specific choice of H in (3.13).

3.4 Choosing Q as a fundamental interpolant

In this section, we present the theory developed in [22] to construct, in addition to the

centered B-spline case of Section 3.2, a second choice for the generating function Q of

Section 3.1. The cardinal spline special case of the interpolatory mask symbol A in

Theorem 3.10 below was also considered in [46, equation (3.27)]. Our results below

extend, simplify and improve upon those in [46]. In particular, we show here, as was

already also pointed out in [23], that the strong hypothesis of the existence of a solution

to the refinement equation [46, equation (3.37)] can be removed.

Using the results of Section 3.3, we shall show that, starting with a given Hurwitz polyno-

mial (mask symbol) B, and its associated refinable function ϕ according to Theorem 1.5,

we can construct a fundamental interpolant Q ∈ C0(R) in the linear space spanned by

the translates {ϕ(2 · −j) : j ∈ Z}. This function Q is shown to be an admissible choice in

the context of Theorem 3.1, and such that the interpolatory condition (3.5) also holds.

Moreover, we shall demonstrate that the resulting Laurent polynomial A constructed from

(3.1) and (1.3) then satisfies the conditions of Theorem 2.2.

Recall that a Pólya frequency sequence a of all orders is such that all the minors of the

bi-infinite matrix W defined by

(W)jk = ak−j, j, k ∈ Z,

are nonnegative. A complete characterisation of such sequences is available in terms of

the zeros of the Laurent polynomial A =
∑

j aj(·)j (see [44, Chapter 8, Theorem 9.5]).

For a Laurent polynomial (or polynomial) p =
∑

j

pj(·)
j, we shall use the notation p(e) =

∑

j

p2j(·)
2j, and p(o) =

∑

j

p2j+1(·)
2j+1, to denote the even and odd parts of p. Note that

then p(e) = 1
2

[
p+ p(−·)

]
, and p(o) = 1

2

[
p− p(−·)

]
.
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Chapter 3. Two classes of convergent subdivision schemes from Aµ,ν

Proposition 3.6 Suppose for an integer m ≥ 2 that the polynomial B =
∑

j

bj(·)
j ∈ πm

is a Hurwitz polynomial of degree m, with B(1) = 2 and B(−1) = 0. Then there exists a

refinable function ϕ ∈ C(R) such that

ϕ(x) = 0, x 6∈ (0,m); (3.24)

ϕ =
∑

j∈Zm

bjϕ(2 · −j) =
∑

j

bjϕ(2 · −j); (3.25)

ϕ(x) > 0, x ∈ (0,m); (3.26)

∑

j

ϕ(x − j) = 1, x ∈ R; (3.27)

∣∣ϕ(x) − ϕ(y)
∣∣ ≤ K |x− y|β, x, y ∈ R, (3.28)

for some constant K > 0, and where β = − log2 ρ, with ρ = ρ(a) as in (1.37) and (1.38),

so that β ∈ (0, 1].

Moreover, the polynomial E of degree m− 2 defined by

E(z) =
∑

j∈Zm−2

ϕ(j+ 1)zj =
∑

j

ϕ(j+ 1)zj, z ∈ C, (3.29)

has only negative zeros and satisfies the Bezout identity

B(z)E(z) − B(−z)E(−z) = 2zE(z2), z ∈ C. (3.30)

Proof. Since B is a Hurwitz polynomial of degree m and B(1) > 0, it follows that bj > 0,

j ∈ Zm. For the existence of a refinable function ϕ ∈ C(R) satisfying the properties

(3.24)–(3.27), we can therefore refer to Theorem 1.5. The Hölder continuity property

(3.28) of ϕ is proved in [50, Theorem 2.5 and Corollary 2.1] (see also [20, Theorem 1.2]).

To prove that the polynomial E defined by (3.29) has only negative zeros, we first appeal

to [36, Theorem 4.1 and Corollary 3.1] (see also [50, Theorem 2.6]) to conclude that

{ϕ(j) : j ∈ Z} is a Pólya frequency sequence of all orders. The fact that E has only

negative zeros then follows directly from [44, Chapter 8, Corollary 3.1].
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Finally, to prove the polynomial identity (3.30), we use (3.29) and (3.25) to obtain, for

z ∈ C,

z E(z2) = z
∑

j

ϕ(j+ 1)z2j

= z
∑

j

[
∑

k

bkϕ(2(j+ 1) − k)

]
z2j

= z
∑

j

[
∑

k

b2kϕ(2j+ 2− 2k) +
∑

k

b2k+1ϕ(2j+ 2− 2k− 1)

]
z2j

= z
∑

k

b2k

[
∑

j

ϕ(2j− 2k+ 2)z2j

]
+ z

∑

k

b2k+1

[
∑

j

ϕ(2j− 2k + 1)z2j

]

= z
∑

k

b2k

[
∑

j

ϕ(2j+ 2)z2j+2k

]
+ z

∑

k

b2k+1

[
∑

j

ϕ(2j+ 1)z2j+2k

]

=

[
∑

k

b2kz
2k

][
∑

j

ϕ((2j+ 1) + 1)z2j+1

]

+

[
∑

k

b2k+1z
2k+1

][
∑

j

ϕ(2j+ 1)z2j

]

= B(e)(z)E(o)(z) + B(o)(z)E(e)(z)

= 1
2

[
B(z) + B(−z)

]
1
2

[
E(z) − E(−z)

]
+ 1

2

[
B(z) − B(−z)

]
1
2

[
E(z) + E(−z)

]

= 1
2
[B(z)E(z) − B(−z)E(−z)] . �

Note that the choice B(z) = 2−m+1(1+ z)m, z ∈ C, in Proposition 3.6 gives, according to

(1.15), (1.16) and (1.41), ϕ = Nm, and observe also that the polynomial E as defined by

(3.29) is then the Euler–Frobenius polynomial as given by (3.22).

The fundamental interpolant Q ∈ C0(R) can now be constructed as follows.

Theorem 3.7 Let, for a given integer m ≥ 2, the polynomial B and the function ϕ be

as defined in Proposition 3.6, and suppose the integer ρ ∈ Nm denotes the order of the

zero at z = −1 of B. Then there exists a sequence c ∈ M0(Z) such that the function Q

defined by

Q =
∑

j

cjϕ(2 · −j) =

m−2∑

j=−2m+2

cjϕ(2 · −j) (3.31)
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has the following properties:

Q(x) = 0, x 6∈ (−m + 1,m− 1); (3.32)

Q(j) = δj, j ∈ Z; (3.33)

∑

j

p(j)Q(·− j) = p, p ∈ πρ−1. (3.34)

Proof. First, observe that (3.32) is a consequence of (3.31) and (3.24). Next, in the

settings of Propositions 3.6 and 3.3, we define the polynomial G of degree 2m− 4 as the

solution of the Bezout identity (3.13) with n = m − 1, and H chosen as the Hurwitz

polynomial of degree 2m− 2 as given by

H = 1
2
BE, (3.35)

where E is the polynomial defined by (3.29), and which, according to Proposition 3.6, has

only negative zeros. If we now define the Laurent polynomial C by

∑

j

cjz
j =

m−2∑

j=−2m+2

cjz
j = C(z) = z−2m+2B(z)G(z), z ∈ C \ {0}, (3.36)

then (3.13) implies the identity

z
[
C(z)E(z) − C(−z)E(−z)

]
= 2, z ∈ C \ {0}. (3.37)

We proceed to show that, with the coefficient sequence {cj : j ∈ Z} ∈M0(Z) as chosen in

(3.36), the function Q defined by (3.31) satisfies the interpolatory property (3.33).

We shall, in fact, prove that

∑

j

Q(j) z2j = 1, z ∈ C \ {0}, (3.38)

which is equivalent to (3.33). To this end, we use (3.31), the definitions (3.36) and (3.29)

to obtain, for z ∈ C \ {0},

∑

j

Q(j)z2j =
∑

j

∑

k

ckϕ(2j− k)z2j

=
∑

j

[∑

k

c2kϕ(2j− 2k) +
∑

k

c2k+1ϕ(2j− 2k− 1)
]
z2j
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=
∑

k

c2k

[∑

j

ϕ(2j− 2k)z2j
]

+
∑

k

c2k+1

[∑

j

ϕ(2j− 2k− 1)z2j
]

=
∑

k

c2k

[∑

j

ϕ(2j+ 2)z2j+2
]
z2k +

∑

k

c2k+1

[∑

j

ϕ(2j+ 1)z2j+1
]
z2k+1

= z
[∑

k

c2kz
2k
][∑

j

ϕ(2j+ 2)z2j+1
]

+ z
[∑

k

c2k+1z
2k+1

][∑

j

ϕ(2j+ 1)z2j
]

= zC(e)(z)E(o)(z) + zC(o)(z)E(e)(z)

=
z

4

[
C(z) + C(−z)

][
E(z) − E(−z)

]
+
z

4

[
C(z) − C(−z)

][
E(z) + E(−z)

]

=
z

2

[
C(z)E(z) − C(−z)E(−z)

]
= 1,

by virtue of (3.37), which then implies the desired result (3.38).

With the Fourier transform of a function f ∈ C0(R) defined by

f̂(x) =

∫∞

−∞

e−ixt f(t)dt, x ∈ R,

we prove property (3.34) by first using the Fourier transform formulations

Q̂(x) = 1
2
C(e−ix/2)ϕ̂

(
x
2

)
, x ∈ R,

and

ϕ̂(x) = 1
2
B(e−ix/2)ϕ̂

(
x
2

)
, x ∈ R, (3.39)

of, respectively, (3.31) and (3.25), as well (3.36), to deduce that

Q̂(x) = ei(m−1)xG(e−ix/2)ϕ̂(x), x ∈ R. (3.40)

Exploiting the fact that the polynomial B has a zero of order ρ at z = −1, we use (3.39)

inductively, to conclude that ϕ̂(`)(2πj) = 0, j ∈ Z \ {0}, ` ∈ Zρ−1, and thus from (3.40),

Q̂(`)(2πj) = 0, j ∈ Z \ {0}, ` ∈ Zρ−1. (3.41)

Now, for a fixed x ∈ R and ` ∈ Zρ−1, define the function u by u(t) := t`Q(x− t), t ∈ R.

It follows that u ∈ C0(R). Now observe from (3.31) and (3.28) that the function Q,

and therefore also the function u, is Hölder continuous with exponent β ∈ (0, 1], and
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therefore also of bounded variation. Hence we can apply the Poisson summation formula
∑

j

u(j) =
∑

j

û(2πj), (see e.g. [8, Chapter 2]), together with (3.41), to obtain

∑

j

j`Q(x− j) =
∑

k∈Z`

(−i)k

(
`

k

)
x`−kQ̂(k)(0). (3.42)

It follows from (3.42) that the function w defined by w :=
∑

j

j`Q(· − j) is in πρ−1 and

satisfies w(k) = k`, k ∈ Z, from (3.33). Thus w(x) = x`, x ∈ R, thereby proving

(3.34). �

Next we show that, with the additional constraints of symmetry and real zeros on the

Hurwitz polynomial B, the fundamental function Q in Theorem 3.7 is also symmetric,

and can therefore be used in (3.1) to construct a mask A ∈ Aµ,ν, for certain µ, ν ∈ N.

First, we prove the following specialisation of Proposition 3.6.

Proposition 3.8 In Proposition 3.6, if it also holds that B is a symmetric polynomial,

then ϕ is a symmetric function in the sense that ϕ(m − ·) = ϕ and, moreover, E is a

symmetric polynomial of degree m− 2. Also,

E(−1)

{
6= 0, m even,

= 0, m odd.
(3.43)

Proof. Define ψ ∈ C0(R) by ψ = ϕ(m− ·). Then, since bm−j = bj, j ∈ Zm, by virtue of

the fact that B is a symmetric polynomial of degree m, we have, for x ∈ R,

∑

j

bjψ(2x− j) =
∑

j

bjϕ(m− 2x + j)

=
∑

j

bm−jϕ(m− 2x + j)

=
∑

j

bjϕ(2(m− x) − j)

= ϕ(m− x) = ψ(x), (3.44)

by virtue also of the refinability (3.25) of ϕ. Since, from (3.27),

∑

j

ψ(x− j) =
∑

j

ϕ(m− x + j) = 1, x ∈ R,
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3.4. Choosing Q as a fundamental interpolant

we deduce from (3.44), together with the uniqueness result in Theorem 1.5, that ψ = ϕ,

and thus ϕ(m− ·) = ϕ.

If we write E(z) =
∑

j∈Zm−2

ej z
j, z ∈ C, then, from (3.29), we have

ej = ϕ(j+ 1), j ∈ Zm−2, (3.45)

and it then follows from the symmetry of ϕ, as proved above, that

em−2−j = ϕ(m− 1− j) = ϕ(j+ 1) = ej, j ∈ Zm−2,

thereby showing that E is a symmetric polynomial.

Finally, to prove (3.43), and following a method introduced in [23] and further developed

in [22], we set z = i in the Bezout identity (3.30), and use the fact that both B and E are

symmetric polynomials, to deduce that

2iE(−1) = B(i)E(i) − B(−i)E(−i)

= B(i)E(i) − B
(

1
i

)
E
(

1
i

)

= B(i)E(i) − im B(i) im−2 E(i)

=
[
1+ (−1)m

]
B(i)E(i). (3.46)

Since B is a Hurwitz polynomial, and since, from Proposition 3.6, the polynomial E has

only negative zeros, we see that B(i)E(i) 6= 0, which together with (3.46), then implies

the desired result (3.43). �

The result of Proposition 3.8 enables us to prove the following.

Theorem 3.9 In Theorem 3.7, if we choose B as a symmetric polynomial of degree m

and with only negative zeros, then the sequence c ∈M0(Z) in (3.31) is symmetric in the

sense that

cj−2m+2 = cm−2−j, j ∈ Z, (3.47)

and the function Q defined by (3.31) has the additional property of symmetry, in the sense

of (3.3).
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Chapter 3. Two classes of convergent subdivision schemes from Aµ,ν

Proof. First, we note from (3.35) and (3.36) in the proof of Theorem 3.7 that, with

the additional constraints on B as in this theorem, and since, from Proposition 3.8, we

know that the polynomial E is symmetric and has only negative zeros, H is a symmetric

Hurwitz polynomial of degree 2m− 2 with only negatives zeros. But then, recalling also

from Proposition 3.3 and 3.4 that then G is a symmetric polynomial of degree 2m − 4,

we find that (3.36) gives, for z ∈ C \ {0},

C(z) = z−2m+2
(
zm B

(
z−1
) )(

z2m−4G
(
z−1
) )

= z−m
(
z2m−2 B

(
z−1
)
G
(
z−1
) )

= z−mC
(
z−1
)
,

thereby proving that cj = c−j−m, j ∈ Z, which is equivalent to the desired result (3.47).

Next, recalling from Proposition 3.8 that ϕ(m− ·) = ϕ, we now use (3.31) and (3.47) to

deduce that, for x ∈ R,

Q(−x) =

m−2∑

j=−2m+2

cjϕ(−2x − j)

=
∑

j∈Z3m−4

cj−2m+2ϕ(−2x− j+ 2m− 2)

=
∑

j∈Z3m−4

cm−2−jϕ(−2x− j+ 2m − 2)

=

m−2∑

j=−2m+2

cjϕ(−2x +m + j)

=

m−2∑

j=−2m+2

cjϕ
(
m− (2x− j)

)

=

m−2∑

j=−2m+2

cjϕ(2x− j) = Q(x).

Hence the function Q is symmetric in the sense of (3.3). �

An important special case of Theorem 3.9 is provided by the choice B(z) = 2
(

1+z
2

)m
,

z ∈ C, so that ρ = m, in which case, according to (3.25), Theorem 1.5, (1.15) and

(1.16), we have that ϕ = Nm, the cardinal B-spline of order m, and E = Em is the

corresponding Euler–Frobenius polynomial of degree m − 2, as given by (3.22). The

resulting minimally supported fundamental spline interpolant Q = Qm, as previously
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3.4. Choosing Q as a fundamental interpolant

investigated by various authors in [58], [15], [49], [19, 26, 25, 27], [10] and [38], can

therefore be explicitly constructed by solving for the polynomial Gm of degree 2m − 4

from the Bezout identity

(
1+z
2

)m
Em(z)Gm(z) −

(
1−z
2

)m
Em(−z)Gm(−z) = z2m−3, z ∈ C, (3.48)

and then defining

Qm =

m−2∑

j=−2m+2

cm,jNm(2 · −j), (3.49)

where, in the notation Cm(z) =

m−2∑

j=−2m+2

cm,jz
j, z ∈ C \ {0}, we have

Cm(z) = 2 z−2m+2
(

1+z
2

)m
Gm(z), z ∈ C \ {0}. (3.50)

These fundamental spline interpolants Qm are useful in approximation theory, in the sense

that the corresponding local spline interpolation operator Q : M(R) → Sm(Z/2) defined

by
(
Qf
)
(x) =

∑

j

f(j)Qm(x− j), x ∈ R,

not only has the interpolatory property
(
Qf
)
(j) = f(j), j ∈ Z, f ∈ M(R), but also,

according to (3.34), is exact on the polynomial space πm−1. For m = 2, 3, 4, the Laurent

polynomial Cm is explicitly calculated by first using (1.13) and (3.23) to obtain

Em(z) =






1, m = 2,

1
2
(1+ z), m = 3, z ∈ C,

1
6
(1+ 4z+ z2), m = 4,

(3.51)

(cf. also [8, p. 191]) and then using (3.48) and (3.50) to find, for z ∈ C, that

Cm(z) =






1
2

(
z−2 + 2z−1 + 1

)
, m = 2,

1
8

(
−z−4 + z−3 + 8z−2 + 8z−1 + 1− z

)
, m = 3,

1
48

(
z−6 − 4z−5 − 6z−4 + 28z−3 + 58z−2 + 28z−1 − 6− 4z+ z2

)
, m = 4.

Using also (3.49), we can then compute Qm for m = 2, 3, 4, as illustrated in Figure 3.5.
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Chapter 3. Two classes of convergent subdivision schemes from Aµ,ν
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(c) m = 4

Figure 3.5: Examples of the fundamental interpolant Qm .

Remark: The graphs in Figure 3.5 were generated using Lane–Riesenfeld subdivision, as

given by (1.24), with initial sequence {cm,j : j ∈ {−2m+ 2, . . . ,m− 2}} for, respectively,

m = 2, 3, 4. From Theorem 1.4, we then conclude that this subdivision scheme converges,

at a geometric rate, to the limit curve Φm =
∑

j

cm,jNm(· − j). Hence, we obtain the

desired function Qm in (3.49) by setting Qm = Φm(2·).

Our main result of this section is now as follows.

Theorem 3.10 For an integer m ≥ 2, let the Laurent polynomial A be defined by (1.3)

and (3.1), with the generating function Q chosen as the symmetric fundamental inter-

polant of Theorem 3.9. Then, with ρ ∈ Nm denoting the order of zero at z = −1 of the

polynomial B, we have that A belongs to the class Am−1−ν,ν, where

ν =

{
1
2
ρ, m even,

1
2
(ρ+ 1), m odd.

(3.52)

Moreover, A satisfies the conditions of Theorem 2.2, with n = m − 1.

[Recall, as observed before Proposition 3.4, thatm and ρ are either both even or both odd.]

Proof. First, observe from (3.1) and (3.33) that

aj = Q
(

j

2

)
, j ∈ Z, (3.53)
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3.4. Choosing Q as a fundamental interpolant

and thus, using also (1.3), (3.31) and (3.29), we get, for z ∈ C \ {0}, that

A(z) =
∑

j

Q
(

j

2

)
zj =

∑

j

∑

k

ckϕ(j− k)zj

= z
∑

j

∑

k

ckϕ(j− k)zj−k−1zk

= z
∑

j

ϕ(j)zj−1
∑

k

ckz
k = zE(z)C(z), (3.54)

which together with (3.36), yields the formula

A(z) = z−2m+3 B(z)E(z)G(z), z ∈ C \ {0}, (3.55)

with the polynomial G as in the proof of Theorem 3.7. It then follows from the hypothesis

that the polynomial B has a zero of order ρ at z = −1, together with the result (3.43) of

Proposition 3.8, that condition (2.42) is satisfied with ν given by (3.52), and thus, from

Proposition 2.5, that the polynomial filling property (2.38) holds with ν given by (3.52).

Next, we observe from (3.55), since also Proposition 3.6 gives deg(E) = m− 2, and, since

the proof of Theorem 3.7 gives deg(G) = 2m − 4, that we have deg(A) = 2m − 3. Also,

from Propositions 3.8 and 3.4, we know that E and G are both symmetric polynomials,

from which, together with the symmetry of the polynomial B, and the formula (3.55), we

deduce that A is a symmetric Laurent polynomial, i.e. (2.36) holds.

Noting from (3.1), (3.33) and Proposition 2.1 that (2.37) holds, we conclude that A

satisfies the conditions of Definition 2.4 with µ = m− 1− ν, and with ν given by (3.52).

It follows that A ∈ Am−1−ν,ν.

But then, using also (2.41), we see that the conditions (2.21) and (2.22) of Theorem 2.2

hold. Also, since the polynomial B is symmetric and has only negative zeros, and thus,

according to Proposition 3.6 and 3.8, the polynomial E is symmetric and has only negative

zeros, we have that the polynomial H as given by (3.35) is symmetric and has only negative

zeros. Thus, from Proposition 3.4, (3.55), and the fact that A(1) = 2, from (2.41), we

conclude that the positivity condition (2.23) is satisfied.
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Chapter 3. Two classes of convergent subdivision schemes from Aµ,ν

Finally, since deg(A) = 2m − 3, as noted above, we conclude that A does indeed satisfy

the conditions of Theorem 2.2 with n = m− 1. �

Remarks:

(a) Observe from (3.52) that, if m is an odd integer ≥ 3, then the polynomial re-

production property (2.54) of the corresponding refinable function φ holds for

ν = 1
2
(ρ+ 1), i.e.

∑

j

p(j)φ(· − j) = p, p ∈ πρ, (3.56)

whereas the generating functionQ has, according to (3.34) in Theorem 3.7, the same

polynomial reproduction property only for polynomials of degree ≤ (ρ− 1). Hence

we did not appeal directly to Theorem 3.1 for the proof of Theorem 3.10, since that

result would not have yielded the improved polynomial reproduction degree ρ in

(3.56).

(b) Observing from (3.52), together with the fact that the order ρ of the zero at z = −1

of the polynomial B satisfies ρ ∈ Nm, we see that A belongs to the class Am−1−ν,ν,

where

ν ∈






Nm
2
, m even,

Nm+1
2
, m odd.

(3.57)

We deduce from (3.57) that m− 1− ν = 0 if and only if

m ∈ {2, 3} and ν =

{
1, m = 2,

2, m = 3.
(3.58)

Hence, we have A ∈ A0,ν if and only ifm and ν are such that (3.58) holds, and thus,

according to (2.39), the Laurent polynomial A of Theorem 3.10 satisfies A = Dν,

the Dubuc–Deslauriers mask symbol as given by (2.13) and (2.12), if and only if

(3.58) holds.

As a special case, we can choose B(z) = 2
(

1+z
2

)m
, z ∈ C, in Theorem 3.9, i.e. Q = Qm

is the minimally supported fundamental spline interpolant (3.49) with knots at the half
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3.4. Choosing Q as a fundamental interpolant

integers. According to the formula (3.54) we then haveA(z) = zCm(z)Em(z), z ∈ C\{0}.

Using (3.51), together with (3.48) and (3.50), we find that, for z ∈ C \ {0},

A(z) = 1
2

(
z−1 + 2+ z

)
, m = 2, (3.59)

A(z) = 1
16

(
−z−3 + 9z−1 + 16+ 9z− z3

)
, m = 3, (3.60)

A(z) = 1
288

(
z−5 − 21z−3 + 164z−1 + 288+ 164z− 21z3 + z5

)
, m = 4. (3.61)

Note in particular from (3.59), (2.17), (3.60) and (2.18), that A = D1 and A = D2, which

is in accordance with our Remark (b) above.

In Figures 3.6 and 3.7, we have plotted the refinable function φ associated with mask

symbol (3.61), and illustrated the associated convergent subdivision scheme Sa.

−5 0 5
−0.2

0

0.2

0.4

0.6

0.8
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Figure 3.6: Associated refinable function φ for the mask symbol (3.61).

(a) c(0) (∗) and c(1) (◦) (b) c(1) (∗) and c(2) (◦) (c) c(0) (∗) and c(6) (–) (d) limit curve

Figure 3.7: Subdivision with the mask symbol (3.61).
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Existence and convergence by

means of the cascade

algorithm

In Chapter 2, we observed that, if a mask symbol A belongs to the class Aµ,ν for some

µ ∈ Z+ and ν ∈ N, then the interpolatory condition (2.21) and condition (2.22) of a zero

at z = −1 of Theorem 2.2 are automatically satisfied. According to Theorem 2.2, the

further constraint (2.23) of positivity on the unit circle in C then guarantees the existence

of a corresponding refinable function φ, as well as the convergence of the associated

subdivision scheme Sa.

In Section 4.1 below, we provide, as was done in [22], an example of a one-parameter

family of mask symbols A ∈ Aµ,ν that do not satisfy (2.23), but for which numerical

evidence seems to suggest the existence of a refinable function, as well as subdivision

convergence. Motivated by these results from [22], we proceed here, in Section 4.2, to

develop alternative sufficient conditions on mask symbols in Aµ,ν in order to capture

existence and convergence for a class of mask symbols which could also include mask

symbols not satisfying the positivity condition (2.23), and we then proceed in Section 4.3

to show that a subclass of our example in Section 4.1 does indeed satisfy these conditions.

4.1 A family of mask symbols with zeros on the unit circle in C

In the setting of Theorem 2.7, we first show that, for an integer n ≥ 2, the one-parameter

family of mask symbols A ∈ A1,n−1 given by

A = A(t|·) = (1− t)Dn−1 + tDn, t ∈ R, (4.1)
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4.1. A family of mask symbols with zeros on the unit circle in C

satisfies A(e±ixt) = 0 for some xt ∈
(

π
2
, π
)

if t > 1. Hence, this particular one-parameter

family of mask symbols A do not satisfy the positivity condition (2.23) of Theorem 2.2.

We shall rely on the following properties of the Dubuc–Deslauriers mask symbol Dn.

Lemma 4.1 For n ∈ N, the Dubuc–Deslauriers mask symbol Dn, as given by (2.13) and

(2.12), can be generated recursively on the unit circle z = eix, x ∈ R, by using the formulas

D1(e
ix) = cos x+ 1, x ∈ R, (4.2)

and

Dn(eix) = Dn−1(e
ix) +

1

22n−2

(
2n− 2

n− 1

)
cos x(sin x)2n−2, x ∈ R, n ≥ 2. (4.3)

Moreover, for all n ∈ N, we have that

Dn(1) = 2, Dn(i) = 1, Dn(−1) = 0. (4.4)

Proof. Setting n = 1 in (2.35), we get

D1(e
ix) =

∫π

x

sinωdω = cos x + 1, x ∈ R,

thereby proving (4.2).

Next, for n ≥ 2, we use (2.35) and integration by parts to obtain, for x ∈ R,

Dn(eix) =
(2n− 1)!

22n−2
[
(n− 1)!

]2
∫π

x

(sinω)2n−1 dω

=
(2n− 1)!

22n−2
[
(n− 1)!

]2
[

1

2n − 1
cos x(sin x)2n−2 +

2n − 2

2n − 1

∫π

x

(sinω)2n−3 dω

]

=
(2n− 2)!

22n−2
[
(n− 1)!

]2 cos x(sin x)2n−2 +
(2n− 3)!

22n−4
[
(n− 2)!

]2
∫π

x

(sinω)2n−3 dω

=
1

22n−2

(
2n− 2

n− 1

)
cos x(sin x)2n−2 +Dn−1(e

ix),

thereby showing that (4.3) holds.

Next, since Dn ∈ A0,n, n ∈ N, we have from (2.36) that Dn(i) = Dn(−i), n ∈ N, and

from (2.37) that Dn(i) + Dn(−i) = 2, from which we then deduce that Dn(i) = 1. As
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Chapter 4. Existence and convergence by means of the cascade algorithm

noted before in (2.41), the remaining two values of Dn in (4.4) are true for all mask

symbols in Aµ,ν, and are therefore also true for Dn. �

The following result from [22] provides a class of mask symbols A1,n−1 that do not satisfy

the positivity condition (2.23).

Proposition 4.2 For a integer n ≥ 2, the mask symbol A(t|·) defined by (4.1) satisfies

A(t|eix) = Dn−1(e
ix) + t

1

22n−2

(
2n− 2

n− 1

)
cos x(sin x)2n−2, x ∈ R, t ∈ R, (4.5)

with Dn denoting the Dubuc–Deslauriers mask symbol of order n. Moreover,

A(t|eiπ) = 0,

A(t|eix) > 0, x ∈ (−π, π),





t ∈ [−2n+ 2, 1], (4.6)

whereas, if t > 1, then there exists exactly one point xt ∈
(

π
2
, π
)

such that

A(t|eix) > 0, x ∈ (−xt, xt)

A(t|e±ixt) = 0,

A(t|eix) < 0, x ∈ (−π, π) \ [−xt, xt],

A(t|eiπ) = 0.






(4.7)

Proof. To prove (4.5), we first rewrite (4.1) as

A(t|z) = Dn−1(z) + t
(
Dn(z) −Dn−1(z)

)
, z ∈ C\{0},

and then use (4.3).

For 0 ≤ t ≤ 1, (4.6) follows from (4.1) and (2.35). Suppose therefore that t ∈ R \ [0, 1].

From (4.4) and (4.1) we have

A(t| 1) = 2, A(t| i) = 1, A(t| −1) = 0, t ∈ R. (4.8)

Now use (2.35) and (4.5) to obtain

d

dx
A(t|eix) =

2n − 1

22n−3

(
2n− 3

n− 1

)
(sin x)2n−3 t

[
cos2 x−

1+
2(n−1)

t

2n− 1

]
, x ∈ R. (4.9)
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4.1. A family of mask symbols with zeros on the unit circle in C

In (4.9), we find that

0 <
1+

2(n−1)

t

2n − 1
< 1, t ∈ R \ [−2n+ 2, 1], (4.10)

whereas
1+

2(n−1)

t

2n− 1
< 0, t ∈ (−2n+ 2, 0). (4.11)

Suppose now that t ∈ (−2n + 2, 0). Then (4.9) and (4.11) imply that d
dx
A(t|eix) < 0,

x ∈ [0, π), which, together with (4.8), gives A(t|x) > 0, x ∈ [0, π). But, the fact that

A ∈ A1,n−1 implies that A is a symmetric Laurent polynomial, so that

A(t|e−ix) = A(t|eix), x ∈ R. (4.12)

Hence, if t ∈ (−2n+2, 0), we also have A(t|eix) > 0, x ∈ (−π, 0]. Since also A(t|−1) = 0

from (4.8), it follows that (4.6) holds for t ∈ (−2n+ 2, 0).

If t = −2n+ 2, we see from (4.9) that

d

dx
A(t|eix) = −

(2n− 1)(n− 1)

22n−4

(
2n− 3

n− 1

)
(sin x)2n−3 cos2 x, x ∈ R,

which, together with (4.8), and the fact that A is symmetric, completes our proof of (4.6).

Next, suppose t ∈ (1,∞). Then (4.10) and (4.9) imply the limits

d

dx
A(t|eix) −→ 0+, x −→ 0+,

and

d

dx
A(t|eix) −→ 0+, x −→ π−.

Moreover, from (4.9) and (4.10), there exist precisely two solutions x0 ∈
(
0, π

2

)
and

x1 ∈
(

π
2
, π
)

of the equation d
dx
A(t|eix) = 0 for x ∈ (0, π). Keeping the symmetry property

(4.12) of A in mind, as well as (4.8), we deduce that there exists exactly one point

xt ∈
(

π
2
, π
)

for which (4.7) holds. �

Proposition 4.2 shows that if t > 1, the mask symbol A(t|·) defined by (4.1) does not

satisfy the positivity condition (2.23), so that Theorem 2.2 is inconclusive regarding the
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Chapter 4. Existence and convergence by means of the cascade algorithm

existence of a corresponding refinable function, or the convergence of the associated sub-

division scheme Sa.

However, setting n = 2 and t = 3
2

in (4.1), we obtain, using also (2.17) and (2.18), the

formula

A
(

3
2
|z
)

= − 3
32
z−3 + 19

32
z−1 + 1+ 19

32
z− 3

32
z3, z ∈ C \ {0}; (4.13)

and if we now apply the associated subdivision scheme Sa to the initial sequence c = δ,

our numerical calculations, as illustrated in Figure 4.1, seem to suggest convergence, to

what would then be the corresponding refinable function φ.

−3 −2 −1 0 1 2 3
−0.2

0

0.2

0.4

0.6

0.8

1

Figure 4.1: Numerical evidence of convergence of Sa with mask symbol (4.13)

In Section 4.2 below, we proceed to develop sufficient conditions for existence and con-

vergence that will also capture a collection of mask symbols for which Theorem 2.2 is not

valid due to the non-compliance of the mask symbol to the positivity condition (2.23).

4.2 A convergence theorem

In this section we derive, in the setting of Theorem 2.2, an alternative to the positivity

condition (2.23), while still ensuring the existence of an interpolatory refinable function

and the convergence of the associated interpolatory subdivision scheme.
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4.2. A convergence theorem

4.2.1 The cascade algorithm

We define, for a given mask a ∈M0(Z), the cascade operator Ta : M(R) →M(R) by

(Taf)(x) =
∑

j

ajf(2x− j), x ∈ R. (4.14)

The corresponding cascade algorithm, then generates, for a given initial function g ∈

M(R), the sequence {φr : r ∈ Z+} ⊂M(R) recursively by

φ0 = g, φr+1 = Taφr, r ∈ Z+. (4.15)

We shall rely on the following relationship, (see [50],[20]), between the subdivision and

cascade operators.

Lemma 4.3 For a given mask a ∈ M0(Z), the subdivision operator Sa : M(Z) → M(Z)

and the cascade operator Ta :M(R) →M(R), as defined by, respectively, (1.2) and (4.14),

satisfy the relationship

(T r
af) (x) =

∑

j

(Sr
aδ)j f(2

rx − j), x ∈ R, r ∈ N, f ∈M(R), (4.16)

with δ = {δj : j ∈ Z}.

Proof. Since Saδ = a from (1.2) and (1.27), we see from (4.14) that (4.16) holds for

r = 1. If r ≥ 2, we use (1.2) and (4.14) to get, for f ∈M(R) and x ∈ R,

∑

j

(Sr
aδ)j f(2

rx− j) =
∑

j

[
∑

k

aj−2k

(
Sr−1

a δ
)

k

]
f(2rx − j)

=
∑

k

(
Sr−1

a δ
)

k

[
∑

j

aj−2kf(2
rx− j)

]

=
∑

k

(
Sr−1

a δ
)

k

[
∑

j

ajf
(
2(2r−1x − k) − j

)]

=
∑

k

(
Sr−1

a δ
)

k
(Taf) (2r−1x− k)

...

=
∑

k

ak

(
T r−1

a f
)
(2x− k) = (T r

af) (x). �
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Chapter 4. Existence and convergence by means of the cascade algorithm

4.2.2 Sufficient conditions for existence and convergence

First, for a given interpolatory mask a ∈M0(Z), we establish, in terms of the associated

interpolatory subdivision scheme Sa, a sufficient condition for the convergence of the

cascade algorithm (4.15) for a suitable choice of initial function g.

We denote by Cu(R) the space of bounded functions in C(R), i.e. f ∈ Cu(R) if f ∈ C(R)

and ||f||∞ := sup
x

|f(x)| < ∞, where we define sup
x

= sup
x∈R

. Recall that Cu(R) is a complete

normed linear space (or Banach space) with respect to the norm || · ||∞.

Note that we use the same notation || · ||∞ for the norm on `∞(Z) and the norm on Cu(R);

however the appropriate meaning should always be clear from the context.

Theorem 4.4 Suppose the mask a ∈M0(Z) also satisfies

a2j = δj, j ∈ Z, (4.17)

∑

j

a2j+1 = 1, (4.18)

and let {φr : r ∈ Z+} denote the sequence in C(R) generated by the cascade algorithm

(4.15) with the initial function g chosen as

g = N2(· + 1), (4.19)

where N2 is the linear B-spline, as given by (1.23).

Also, with the choice c = δ in (1.4), let, according to Proposition 1.1, {c(r) : r ∈ Z+} ⊂

`∞(Z) denote the sequence generated, according to (1.5), by the subdivision scheme Sa,

and define the sequence
{
γ(r) : r ∈ Z+

}
⊂ `∞(Z) by

γ
(r)

j = c
(r)

j − 1
2

(
c

(r)

j−1 + c
(r)

j+1

)
, j ∈ Z, r ∈ Z+. (4.20)

If, moreover, there exists a real number ρ = ρ(a) ∈ [0, 1) such that

||γ(r+1)||∞ ≤ ρ ||γ(r)||∞, r ∈ Z+, (4.21)
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4.2. A convergence theorem

then the cascade algorithm (4.15) converges in the sense that there exists a function φ ∈

Cu(R) such that

||φ − φr||∞ ≤
ρr+1

1− ρ
−→ 0, r −→ ∞. (4.22)

Proof. First, observe from (4.19), (1.23), (1.15) and (1.16) that g ∈ C0(R), and that

g =
∑

j

bj g(2 · −j), where bj =






1
2
, j = ±1,

1, j = 0,

0, j 6∈ {−1, 0, 1}.

(4.23)

Now use Lemma 4.3, together with (1.5), (4.17), Proposition 2.1, (2.2), (4.23) (1.18) and

(1.19), to deduce that, for r ∈ Z+ and x ∈ R, we have

|φr+1(x) − φr(x)| =

∣∣∣∣∣
∑

j

(Sr+1
a δ)jg(2

r+1x − j) −
∑

j

(Sr
aδ)jg(2

rx− j)

∣∣∣∣∣

=

∣∣∣∣∣
∑

j

c
(r+1)

j g(2r+1x − j) −
∑

j

c
(r)

j g(2
rx− j)

∣∣∣∣∣

=

∣∣∣∣∣
∑

j

c
(r+1)

j g(2r+1x − j) −
∑

j

c
(r+1)

2j

∑

k

bk g(2
r+1x − 2j− k)

∣∣∣∣∣

=

∣∣∣∣∣
∑

j

c
(r+1)

j g(2r+1x − j) −
∑

j

c
(r+1)

2j

∑

k

bk−2j g(2
r+1x − k)

∣∣∣∣∣

=

∣∣∣∣∣
∑

j

c
(r+1)

j g(2r+1x − j) −
∑

j

(
∑

k

bj−2kc
(r+1)

2k

)
g(2r+1x − j)

∣∣∣∣∣

=

∣∣∣∣∣
∑

j

[
c

(r+1)

j −
∑

k

bj−2kc
(r+1)

2k

]
g(2r+1x − j)

∣∣∣∣∣

=

∣∣∣∣∣
∑

j

[
c

(r+1)

2j −
∑

k

b2j−2kc
(r+1)

2k

]
g(2r+1x− 2j)

+
∑

j

[
c

(r+1)

2j+1 −
∑

k

b2j+1−2kc
(r+1)

2k

]
g(2r+1x − 2j− 1)

∣∣∣∣∣

=

∣∣∣∣∣
∑

j

[
c

(r+1)

2j+1 −
∑

k

b2j+1−2kc
(r+1)

2k

]
g(2r+1x− 2j− 1)

∣∣∣∣∣

=

∣∣∣∣∣
∑

j

[
c

(r+1)

2j+1 − 1
2
c

(r+1)

2j − 1
2
c

(r+1)

2j+2

]
g(2r+1x− 2j− 1)

∣∣∣∣∣
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=

∣∣∣∣∣
∑

j

γ
(r+1)

2j+1 g(2
r+1x − 2j− 1)

∣∣∣∣∣

≤
∑

j

∣∣∣γ(r+1)

2j+1

∣∣∣ g(2r+1x − 2j− 1)

≤
∣∣∣∣γ(r+1)

∣∣∣∣
∞

∑

j

g(2r+1x − 2j− 1)

≤
∣∣∣∣γ(r+1)

∣∣∣∣
∞

∑

j

g(2r+1x − j) =
∣∣∣∣γ(r+1)

∣∣∣∣
∞
. (4.24)

But (4.21) implies that, for r ∈ Z+,

∣∣∣∣γ(r+1)
∣∣∣∣

∞
≤ ρ

∣∣∣∣γ(r)
∣∣∣∣

∞
≤ ρ2

∣∣∣∣γ(r−1)
∣∣∣∣

∞
≤ · · · ≤ ρr+1

∣∣∣∣γ(0)
∣∣∣∣

∞
≤ ρr+1, (4.25)

since
∣∣∣∣γ(0)

∣∣∣∣
∞

= 1, from the fact that (4.20) yields γ
(0)

j = δj − 1
2
(δj−1 + δj+1), j ∈ Z. It

follows from (4.24) and (4.25) that

∣∣φr+1(x) − φr(x)
∣∣ ≤ ρr+1, x ∈ R, r ∈ Z+,

from which we then deduce that

∣∣φr+`(x) − φr(x)
∣∣ ≤ ρr+1

1− ρ
, x ∈ R, r ∈ Z+, ` ∈ N. (4.26)

Since (4.14), together with the fact that a ∈ M0(Z), implies that the operator Ta maps

C0(R) into C0(R) ⊂ Cu(R), and since g ∈ C0(R) ⊂ Cu(R), we see from (4.15) that

{φr : r ∈ Z+} ⊂ C0(R) ⊂ Cu(R). Hence (4.26) yields the estimate

∣∣∣∣φr+` − φr

∣∣∣∣
∞

≤
ρr+1

1− ρ
, r ∈ Z+, ` ∈ N,

so that ||φj − φk||∞ −→ 0, j, k −→ ∞, and we conclude that {φr : r ∈ Z+} is a Cauchy

sequence in Cu(R) with respect to the || · ||∞ norm. But Cu(R) is a complete normed

linear space (or Banach space) with respect to the norm || · ||∞. Hence there exists a limit

function φ ∈ Cu(R) such that ||φ − φr||∞ −→ 0, r −→ ∞. Moreover, since, for a fixed

r ∈ Z+, and any ` ∈ N, we have from (4.26) that

||φ − φr||∞ ≤ ||φ − φr+`||∞ + ||φr+` − φr||∞

≤ ||φ − φr+`||∞ +
ρr

1− ρ

−→ 0+
ρr

1− ρ
, ` −→ ∞.
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4.2. A convergence theorem

It then follows that (4.22) holds. �

Next, we prove the following properties of the limit function φ in Theorem 4.4.

Theorem 4.5 Suppose, in Theorem 4.4, we also have that

supp(a) = [M, . . . ,N], (4.27)

where M,N ∈ Z satisfy M ≤ −1 and N ≥ 1. Then the limit function φ in Theorem 4.4

is in C0(R), and satisfies the conditions

φ(x) = 0, x 6∈ (M,N); (4.28)

φ =
∑

j

ajφ(2 · −j); (4.29)

φ(j) = δj, j ∈ Z; (4.30)

∑

j

φ(x − j) = 1, x ∈ R. (4.31)

Moreover, φ is the unique function in C0(R) satisfying (4.29) and (4.30).

Proof. Our first step is to prove that

φr(x) = 0, x 6∈
(
M− M+1

2r , N− N−1
2r

)
, r ∈ Z+, (4.32)

which, together with the conditions M ≤ −1 and N ≥ 1, would then imply that

φr(x) = 0, x 6∈ (M,N), r ∈ Z+. (4.33)

To this end, we first note from (4.19) and (1.23) that

g(x) =






x + 1, x ∈ (−1, 0),

1− x, x ∈ [0, 1),

0, x 6∈ (−1, 1),

(4.34)

and thus, since φ0(x) = g(x) = 0, x 6∈ (−1, 1), we see that (4.32) holds for r = 0.

Proceeding inductively, we next assume that (4.32) holds for a fixed r ∈ Z+. Then (4.15),
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Chapter 4. Existence and convergence by means of the cascade algorithm

(4.14) and (4.27) imply that (4.32) holds for r+ 1. The general validity of (4.32) follows

by induction.

Now let x 6∈ (M,N). Then, (4.33) and (4.22) yield

|φ(x)| = |φ(x) − φr(x)| ≤ ||φ − φr||∞ −→ 0, r −→ ∞,

thereby proving that (4.28) holds, and thus also that φ ∈ C0(R).

To prove the refinability (4.29) of φ, we first show that Ta maps Cu(R) into itself. To

this end, we use (4.27) and (4.14) to obtain, for f ∈ Cu(R) and x ∈ R, the estimates

∣∣ (Taf) (x)
∣∣ ≤

N∑

j=M

|aj| |f(2x− j)| ≤ ||f||∞

N∑

j=M

|aj|,

from which we then deduce that Ta maps Cu(R) into itself, with

||Taf||∞ ≤ ||f||∞

N∑

j=M

|aj|, f ∈ Cu(R).

Hence,

||Taf||∞
||f||∞

≤
N∑

j=M

|aj|, f ∈ Cu(R), f 6= 0,

and it follows that Ta is in fact a bounded linear operator from Cu(R) to Cu(R), with the

operator norm ||Ta||∞ ≤
N∑

j=M

|aj|.

According to a standard result (see e.g. [33, Theorem 4.4.2]), Ta is therefore also a contin-

uous operator from Cu(R) into itself. It then follows from (4.22), together with the fact

that φ ∈ C0(R) ⊂ Cu(R), that

φ = lim
r→∞

φr+1 = lim
r→∞

(Taφr) = Ta

(
lim
r→∞

φr

)
= Taφ,

and thus φ = Taφ, which, according to the definition (4.14) of the cascade operator Ta,

is equivalent to the refinement equation (4.29).

Next, to prove (4.30), we first show that

φr(j) = δj, j ∈ Z, r ∈ Z+. (4.35)
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4.2. A convergence theorem

Observing from (4.15) and (4.34) that (4.35) holds for r = 0, we suppose next that (4.35)

is true for a fixed r ∈ Z+. Then (4.14) and (4.15) give, for j ∈ Z,

φr+1(j) =
∑

k

akφr(2j− k) =
∑

k

a2j−kφr(k) =
∑

k

a2j−kδk = a2j = δj,

from (4.17), thereby concluding our inductive proof of (4.35). But then (4.22) and (4.35)

yield, for j ∈ Z,

∣∣φ(j) − δj

∣∣ =
∣∣φ(j) − φr(j)

∣∣ ≤
∣∣∣∣φ − φr

∣∣∣∣
∞

−→ 0, r −→ ∞,

from which we deduce that (4.30) is true.

Similarly, we prove (4.31) by first showing inductively that

∑

j

φr(x− j) = 1, x ∈ R, r ∈ Z+. (4.36)

To this end, first note from (4.15), (4.19), and (4.34) that (4.36) is true for r = 0. We

now assume that (4.36) holds for a fixed r ∈ Z+. But then, from (4.14) and (4.15), and

since (4.17) and (4.18) hold, we get, for x ∈ R, that

∑

j

φr+1(x− j) =
∑

j

[
∑

k

akφr(2x− 2j− k)

]

=
∑

j

[
∑

k

ak−2jφr(2x− k)

]

=
∑

k

[
∑

j

ak−2j

]
φr(2x− k)

=
∑

k

φr(2x− k) = 1,

from our induction hypothesis. Hence (4.36) is true.

Now for a fixed x ∈ R, and suppose k is the (unique) integer such that x ∈ [k, k + 1).
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Chapter 4. Existence and convergence by means of the cascade algorithm

Using (4.36) and (4.28), we obtain, for r ∈ Z+,
∣∣∣∣∣
∑

j

φ(x − j) − 1

∣∣∣∣∣ =

∣∣∣∣∣
∑

j

[
φ(x − j) − φr(x − j)

]
∣∣∣∣∣

=

∣∣∣∣∣

k−M∑

j=k+1−N

[
φ(x − j) − φr(x− j)

]
∣∣∣∣∣

≤
k−M∑

j=k+1−N

∣∣φ(x − j) − φr(x− j)
∣∣

≤ (N−M)
∣∣∣∣φ − φr

∣∣∣∣
∞

−→ 0, r −→ ∞,

by virtue of (4.22), and it follows that (4.31) does indeed hold.

Finally, to prove the uniqueness result of the theorem, suppose that ψ ∈ C0(R) satisfies

ψ =
∑

j

ajψ(2 · −j), (4.37)

and

ψ(j) = δj, j ∈ Z, (4.38)

and let θ = φ− ψ. Our proof will be complete if we can show that

θ
(

k
2r

)
= 0, k ∈ Z, r ∈ Z+, (4.39)

from which it would then follow that θ(x) = 0, x ∈ R, since the dyadic set
{

k
2r : k ∈ Z, r ∈ Z+

}

is dense in R, and θ ∈ C0(R).

To prove (4.39), we first note from (4.30) and (4.38) that (4.39) holds for r = 0. Next

we use (4.29) and (1.2) to deduce that, for k ∈ Z and r ∈ N, and with δ = {δj : j ∈ Z},

we have

φ
(

k
2r

)
=

∑

j

ajφ
(

k
2r−1 − j

)

=
∑

j

(Saδ)jφ
(

k
2r−1 − j

)

=
∑

j

(Saδ)j

∑

`

a`φ
(

k
2r−2 − 2j− `

)

=
∑

j

(Saδ)j

∑

`

a`−2jφ
(

k
2r−2 − `

)
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4.2. A convergence theorem

=
∑

`

[
∑

j

a`−2j (Saδ)j

]
φ
(

k
2r−2 − `

)

=
∑

`

(
S2

aδ
)

`
φ
(

k
2r−2 − `

)

...

=
∑

`

(Sr
aδ)`φ(k − `) = (Sr

aδ)k , (4.40)

having also used (4.30). Similarly, (4.37) and (4.38) yield

ψ
(

k
2r

)
= (Sr

aδ)k , k ∈ Z, r ∈ Z+. (4.41)

Together, (4.40) and (4.41) then show that (4.39) also holds for r ∈ N. �

As an immediate consequence of Theorems 4.4 and 4.5, together with Theorem 2.6, we

can now state the following result.

Corollary 4.6 In Theorem 4.4, suppose the mask a ∈M0(Z), in addition to satisfying

(4.17) and (4.18), is such that the corresponding mask symbol A, as defined by (1.3),

belongs to the class Aµ,ν for some µ ∈ Z+ and ν ∈ N. Then Theorem 4.5 holds with

M = −2µ − 2ν + 1 and N = 2µ + 2ν − 1, and the corresponding refinable function φ

satisfies the properties (2.54) – (2.57) of Theorem 2.6.

Next, regarding the convergence of the subdivision scheme Sa associated with the mask

a of Theorem 4.4, we note that the existence of the corresponding refinable function φ,

together with the properties (4.29) and (4.30) can be used, as in the proof of Theorem 2.2

(see also Remark (b) after that proof), to immediately yield the following result.

Theorem 4.7 The subdivision scheme Sa, as defined by (1.2) and (1.4), and with mask

a ∈ M0(Z) as in Theorem 4.4, is interpolatory in the sense of (2.1), and converges on

M(Z), in the sense that (2.28) holds, and with the limit function Φ given by (2.27).

To complete our existence and convergence theory of this section, we establish sufficient

conditions on the mask a of Theorem 4.4 for the contractive property (4.21) to hold.
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Theorem 4.8 Suppose the mask symbol A associated with the mask a ∈M0(Z) in The-

orem 4.4 is such that A belongs to the class Aµ,ν for some µ ∈ Z+ and ν ∈ N, with

n = µ+ ν ≥ 2. Suppose also, with the sequence α = {α` : ` ∈ Z} ∈M0(Z) defined by

α` =






n−1∑

k=`+1

(k− `)a2k+1, ` ∈ Zn−2,

0, ` 6∈ Zn−2,

(4.42)

that the two inequalities
∑

`∈Zn−2

|α`| <
1

4
, (4.43)

and
∑

`∈Zn−1

|α`−1 + α`| <
1

4
, (4.44)

are satisfied. Then there exists a real number ρ = ρ(a) ∈ [0, 1) such that the inequality

(4.21) holds, so that all the conclusions of Theorems 4.4 and 4.5, Corollary 4.6 and

Theorem 4.7 are valid.

Proof. We first prove that the sequence {γ(r) : r ∈ Z+} ⊂ `∞(Z), as given by (4.20),

satisfies the recursion formulas

γ
(r+1)

2j+1 = −2
∑

`∈Zn−2

α`

(
γ

(r)

j+`+1 + γ
(r)

j−`

)
, j ∈ Z, r ∈ Z+, (4.45)

γ
(r+1)

2j =
1

2


γ(r)

j + 2
∑

`∈Zn−1

(α`−1 + α`)
(
γ

(r)

j+` + γ
(r)

j−`

)

 , j ∈ Z, r ∈ Z+. (4.46)

To this end, we first use (1.2), (1.4), and (2.53) and (2.52), to obtain, for j ∈ Z and r ∈ Z+,

c
(r+1)

2j+1 =
∑

k∈{j+Jn}

a2j+1−2kc
(r)

k =
∑

k∈Jn

a1−2kc
(r)

k+j

=

0∑

k=−n+1

a1−2kc
(r)

k+j +
∑

k∈Nn

a1−2kc
(r)

k+j

=
∑

k∈Nn

a2k−1

(
c

(r)

1−k+j + c
(r)

k+j

)
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=
∑

k∈Zn−1

a2k+1

(
c

(r)

j−k + c
(r)

j+k+1

)

=
∑

k∈Nn−1

a2k+1

(
c

(r)

j−k + c
(r)

j+k+1

)
+ a1

(
c

(r)

j + c
(r)

j+1

)
. (4.47)

But (2.40), (2.53), (4.18) and (2.52) give

1 =
∑

j

a2j+1 =

−1∑

j=−n

a2j+1 +
∑

j∈Zn−1

a2j+1 =
∑

j∈Zn−1

(
a−2j−1 + a2j+1

)
= 2

∑

j∈Zn−1

a2j+1,

and thus
∑

j∈Zn−1

a2j+1 =
1

2
. (4.48)

Combining (4.47) and (4.48) then yields, for j ∈ Z and r ∈ Z+,

c
(r+1)

2j+1 =
∑

k∈Nn−1

a2k+1

(
c

(r)

j−k + c
(r)

j+k+1

)
+
(

1
2

−
∑

k∈Nn−1

a2k+1

)(
c

(r)

j + c
(r)

j+1

)

=
∑

k∈Nn−1

a2k+1

(
c

(r)

j−k − c
(r)

j+1 − c
(r)

j + c
(r)

j+k+1

)
+ 1

2

(
c

(r)

j + c
(r)

j+1

)
. (4.49)

Now we use (4.20), (4.49) and (2.2) to obtain, for j ∈ Z and r ∈ Z+,

γ
(r+1)

2j+1 = c
(r+1)

2j+1 − 1
2

(
c

(r+1)

2j + c
(r+1)

2j+2

)

= c
(r+1)

2j+1 − 1
2

(
c

(r)

j + c
(r)

j+1

)

=
∑

k∈Nn−1

a2k+1

(
c

(r)

j−k − c
(r)

j+1 − c
(r)

j + c
(r)

j+k+1

)
. (4.50)

We claim that, for j ∈ Z, k ∈ N and r ∈ Z+,

c
(r)

j−k − c
(r)

j+1 − c
(r)

j + c
(r)

j+k+1 = −2
∑

`∈Zk−1

(k− `)
(
γ

(r)

j+`+1 + γ
(r)

j−`

)
. (4.51)

To prove (4.51), we insert the definition (4.20) into the right-hand side of (4.51) to find

that

−2
∑

`∈Zk−1

(k− `)
(
γ

(r)

j+`+1 + γ
(r)

j−`

)

=
∑

`∈Zk−1

(k− `)
(
c

(r)

j+`+2 − 2c
(r)

j+`+1 + c
(r)

j+` + c
(r)

j−`+1 − 2c
(r)

j−` + c
(r)

j−`−1

)
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=
∑

`∈Zk−1

(k− `)
(
c

(r)

j+`+2 + c
(r)

j−`−1

)
− 2

∑

`∈Zk−1

(k− `)
(
c

(r)

j+`+1 + c
(r)

j−`

)

+
∑

`∈Zk−1

(k− `)
(
c

(r)

j+` + c
(r)

j−`+1

)

=

k+1∑

`=2

(k − `+ 2)
(
c

(r)

j+` + c
(r)

j−`+1

)
− 2

∑

`∈Nk

(k − `+ 1)
(
c

(r)

j+` + c
(r)

j−`+1

)

+
∑

`∈Zk−1

(k− `)
(
c

(r)

j+` + c
(r)

j−`+1

)

= k
(
c

(r)

j + c
(r)

j+1

)
+ (k− 1)

(
c

(r)

j+1 + c
(r)

j

)
− 2k

(
c

(r)

j+1 + c
(r)

j

)

+

k−1∑

`=2

[
k− `+ 2− 2(k− `+ 1) + k − `

](
c

(r)

j+` + c
(r)

j−`+1

)

+
(
c

(r)

j+k+1 + c
(r)

j−k

)
− 2
(
c

(r)

j+k + c
(r)

j−k+1

)
+ 2
(
c

(r)

j+k + c
(r)

j−k+1

)

= −
(
c

(r)

j+1 + c
(r)

j

)
+
(
c

(r)

j+k+1 + c
(r)

j−k

)
,

which is the left-hand side of (4.51).

Now substitute (4.51) into (4.50) to obtain, for j ∈ Z and r ∈ Z+,

γ
(r+1)

2j+1 = −2
∑

k∈Nn−1

a2k+1

∑

`∈Zk−1

(k − `)
(
γ

(r)

j+`+1 + γ
(r)

j−`

)

= −2
∑

`∈Zn−2

[
n−1∑

k=`+1

(k − `)a2k+1

](
γ

(r)

j+`+1 + γ
(r)

j−`

)
= −2

∑

`∈Zn−2

α`

(
γj+`+1 + γj−`

)
,

from (4.42), and thereby proving the recursion formula (4.45).

To prove (4.46), we first show that

γ
(r+1)

2j = 1
2

(
γ

(r)

j − γ
(r+1)

2j+1 − γ
(r+1)

2j−1

)
, j ∈ Z, r ∈ Z+. (4.52)

To this end, we first use (4.20) and (2.2) to obtain, for j ∈ Z and r ∈ Z+,

γ
(r)

j − γ
(r+1)

2j+1 − γ
(r+1)

2j−1

= 1
2

[
2c

(r)

j − c
(r)

j−1 − c
(r)

j+1 − 2c
(r+1)

2j+1 + c
(r+1)

2j + c
(r+1)

2j+2 − 2c
(r+1)

2j−1 + c
(r+1)

2j−2 + c
(r+1)

2j

]

= 2c
(r+1)

2j − c
(r+1)

2j+1 − c
(r+1)

2j−1 = 2 γ
(r+1)

2j ,
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thereby proving (4.52). Now we substitute (4.45) into (4.52) to get, for j ∈ Z and r ∈ Z+,

2 γ
(r+1)

2j = γ
(r)

j + 2
∑

`∈Zn−2

α`γ
(r)

j+`+1 + 2
∑

`∈Zn−2

α`γ
(r)

j−` + 2
∑

`∈Zn−2

α`γ
(r)

j+` + 2
∑

`∈Zn−2

α`γ
(r)

j−1−`

= γ
(r)

j + 2
∑

`∈Nn−1

α`−1γ
(r)

j+` + 2
∑

`∈Zn−2

α`γ
(r)

j−` + 2
∑

`∈Zn−2

α`γ
(r)

j+` + 2
∑

`∈Nn−1

α`−1γ
(r)

j−`

= γ
(r)

j + 2
∑

`∈Zn−1

(
α`−1 + α`

)
γ

(r)

j+` + 2
∑

`∈Zn−1

(
α`−1 + α`

)
γ

(r)

j−`

= γ
(r)

j + 2
∑

`∈Zn−1

(
α`−1 + α`

)(
γ

(r)

j+` + γ
(r)

j−`

)
,

after having recalled also from (4.42) that α−1 = αn−1 = 0, and thereby proving (4.46).

We proceed to use the recursion relations (4.45) and (4.46) to prove our theorem.

From (4.45) we have, for j ∈ Z and r ∈ Z+, that

∣∣∣γ(r+1)

2j+1

∣∣∣ ≤ 2
∑

`∈Zn−2

|α`|
(
|γ

(r)

j+`+1| + |γ
(r)

j−`|
)

≤ 4
∣∣∣∣γ(r)

∣∣∣∣
∞

∑

`∈Zn−2

|α`| (4.53)

and thus

sup
j

∣∣∣γ(r+1)

2j+1

∣∣∣ ≤


4

∑

`∈Zn−2

|α`|


 ∣∣∣∣γ(r)

∣∣∣∣
∞
, r ∈ Z+, (4.54)

whereas, similarly, from (4.46), we see, for j ∈ Z and r ∈ Z+, that

∣∣∣γ(r+1)

2j

∣∣∣ ≤ 1

2

∣∣∣∣γ(r)
∣∣∣∣

∞


1+ 4

∑

`∈Zn−1

|α`−1 + α`|


 , (4.55)

so that

sup
j

∣∣∣γ(r+1)

2j

∣∣∣ ≤


1
2

+ 2
∑

`∈Zn−1

|α`−1 + α`|


 ∣∣∣∣γ(r)

∣∣∣∣
∞
, r ∈ Z+. (4.56)

Hence, if we define

ρ = ρ(a) = max





4

∑

`∈Zn−2

|α`|,
1

2
+ 2

∑

`∈Zn−1

|α`−1 + α`|





, (4.57)

it follows from (4.54), (4.56), together with (4.43) and (4.44), that (4.21) is satisfied, with

ρ = ρ(a) ∈ [0, 1) given by (4.57). �
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4.3 Examples

We proceed to apply our existence and convergence result of Theorem 4.8 to specific

examples.

4.3.1 The cases n = 2 and n = 3 of Section 4.1

(a) First, we apply Theorem 4.8 to the family of mask symbols of Section 4.1, for the

case n = 2, so that A(t|·) ∈ A1,1, t ∈ R. From (4.1), (2.17) and (2.18), we obtain, for

t ∈ R and z ∈ C \ {0}, the formula

A(t|z) = (1− t)D1(z) + tD2(z)

= −
t

16
z−3 +

(
1

2
+
t

16

)
z−1 + 1+

(
1

2
+
t

16

)
z−

t

16
z3, (4.58)

and thus, using (1.3), (4.58) and (4.42), we have

α0 = −
t

16
, αj = 0, j 6= 0, t ∈ R. (4.59)

Noting, in the notation of Theorem 4.8, that we have here n = 2, and therefore, from

(4.59), that in this case

∑

`∈Zn−2

|α`| =
1
2

(
|α−1 + α0| + |α0 + α1|

)
= 1

2

∑

`∈Zn−1

|α`−1 + α`|, t ∈ R,

we immediately deduce that the conditions (4.43) and (4.44) of Theorem 4.8 hold if and

only if (4.44) holds, i.e., if and only if 2 |α0| <
1
4
, or equivalently, according to (4.59), if

and only if |t| < 2. It then follows from Theorem 4.8 that the family of masks A(t|·), as

given by (4.58), satisfies all the conditions of Theorems 4.4 and 4.5, Corollary 4.6 and

Theorem 4.7, if and only if |t| < 2.

In particular, the mask symbol (4.13) satisfies the conditions of Theorem 4.8, since there

t = 3
2
< 2, and therefore, as was suggested by the graphical numerical evidence, the func-

tion plotted in Figure 4.1 is indeed the corresponding refinable function φ of Theorem 4.4.
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Now observe that Proposition 4.2 with n = 2, together with Theorem 2.2, imply the

existence of a refinable function φ and the convergence of the associated subdivision

scheme Sa for t ∈ [−2, 1]. Hence, in particular, for t > 1, in which case, according to

Proposition 4.2, A(t|·) has two zeros on the unit circle in C, and about which Theorem 2.2

is therefore inconclusive, our Theorem 4.8 actually extends the existence and convergence

interval to t ∈ [−2, 2).

It should be pointed out here that, according to explicit calculations by other authors (see

[5, Example 3.1],[32]) with respect to more refined contractivity properties of the subdivi-

sion operator Sa than is captured by the inequality (4.21), the existence and convergence

interval can actually be extended to t ∈ (−8, 8). This is a substantial improvement on

our analogous result, which merely yields the interval t ∈ (−2, 2).

(b) Next, we consider the case n = 3 in (4.1), for which, to our knowledge, an existence

and convergence t-interval has not, as in (a) above, been previously investigated. In this

case we have A(t|·) ∈ A1,2, t ∈ R, and we obtain, from (4.1), (2.18) and (2.19), for t ∈ R

and z ∈ C \ {0}, the formula

A(t|z) = (1− t)D2(z) + tD3(z)

=
3t

28
z−5 −

(
1

16
+
9t

28

)
z−3 +

(
9

16
+
6t

28

)
z−1 + 1

+

(
9

16
+
6t

28

)
z−

(
1

16
+
9t

28

)
z3 +

3t

28
z5. (4.60)

Using (1.3), (4.60) and (4.42), we then calculate the values

α0 = −

(
1

16
+
3t

28

)
, α1 =

3t

28
, αj = 0, j 6∈ Z1, t ∈ R. (4.61)

In the notation of Theorem 4.8, we now have n = 3, so that, using (4.61), we find that

∑

`∈Zn−2

|α`| = |α−1 +α0| + |α1 +α2| ≤ |α−1 +α0| + |α0 +α1| + |α1 +α2| =
∑

`∈Zn−1

|α`−1 +α`|,

from which we immediately deduce that the conditions (4.43) and (4.44) of Theorem 4.8
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hold if and only if (4.44) holds, i.e. if and only if

|α0| + |α0 + α1| + |α1| <
1

4
, (4.62)

which we find, after substituting (4.61) into (4.62), to hold if and only if

|16+ 3t| + |3t| < 48, (4.63)

or equivalently,
∣∣t− 8

3

∣∣ < 8, i.e. t ∈
(
−32

3
, 16

3

)
.

It then follows from Theorem 4.8 that the family of masks A(t|·), as given by (4.60),

satisfies all the conditions of Theorems 4.4 and 4.5, Corollary 4.6 and Theorem 4.7, if and

only if
∣∣t− 8

3

∣∣ < 8, i.e., if and only if t ∈
(
−32

3
, 16

3

)
.

For example, setting t = 5 in (4.60), we obtain, for z ∈ C \ {0},

A(5|z) =
1

256

(
15 z−5 − 61 z−3 + 174 z−1 + 256+ 174 z− 61 z3 + 15 z5

)
, (4.64)

for which, from the analysis above, there exists a refinable function, plotted in Figure 4.2

and a convergent subdivision scheme, as illustrated in Figure 4.3.

−5 0 5

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 4.2: Refinable function with mask symbol (4.64)

Observe that, for the mask symbol A(t|·) given by (4.60), Proposition 4.2 with n = 3

and Theorem 2.2 imply the existence of a refinable function φ and the convergence of the

associated subdivision scheme Sa for t ∈ [−4, 1]. Hence, in particular for t > 1, in which

case, according to Proposition 4.2, A(t|·) has two zeros on the unit circle in C, and about

which Theorem 2.2 is therefore inconclusive, our Theorem 4.8 extends the existence and

convergence interval to t ∈
[
−4, 16

3

)
.

85



4.3. Examples

(a) c(0) (∗) and c(1) (◦) (b) c(1) (∗) and c(2) (◦) (c) c(0) (∗) and c(6) (–) (d) limit curve

Figure 4.3: Illustration of subdivision with mask symbol (4.64)

4.3.2 The Dubuc–Deslauriers case

In this thesis, existence and convergence for the Dubuc–Deslauriers mask symbol A = Dn

have already been established in Theorem 2.3 (see also the remark after Theorem 3.5).

It is interesting to investigate whether the Dubuc–Deslauriers mask a = dn actually

satisfies the conditions (4.43) and (4.44) of Theorem 4.8, in which case we would then

have an alternative existence and convergence proof. Since the values t = 0 and t = 1

are included in our convergence intervals (−2, 2) and
(
−32

8
, 16

3

)
in Section 4.3.1, we can

already conclude that the masks a = dn, n ∈ {2, 3} do indeed satisfy the conditions (4.43)

and (4.44) of Theorem 4.8.

In general, with the notation

Sn = 4
∑

`∈Zn−2

|α`|, Tn = 4
∑

`∈Zn−1

|α`−1 + α`|, (4.65)

with {α` : ` ∈ Zn−1} defined by (4.42) and (2.12), and where here a = dn, we wish to

prove that

Sn < 1 and Tn < 1, for every integer n ≥ 2. (4.66)

For the cases n = 2, 3, 4, 5, we use (2.16) in (4.42) to calculate the values in Table 4.1. It

follows that the mask a = dn satisfies the conditions (4.43) and (4.44) for n ∈ {2, 3, 4, 5}.
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n 2 3 4 5

Sn
1
4

11
32

103
256

555
1247

Tn
1
2

19
32

81
128

995
1521

Table 4.1: Calculated values for the Dubuc–Deslauriers masks

Next, using a numerical technique based on (2.12) and (4.42), we obtain the graph in

Figure 4.4 for n ∈ {2, . . . , 28}.

5 10 15 20 25
0.3

0.4

0.5

0.6

0.7

0.8

PSfrag replacements
Sn

Tn

n

Figure 4.4: Numerical experiments with Sn and Tn.

On the basis of this numerical evidence, it seems plausible to conjecture that the Dubuc–

Deslauriers mask a = dn does indeed satisfy (4.66), and therefore the conditions (4.43)

and (4.44) for all n ≥ 2. A further investigation of this conjecture is in progress, and

initial results are promising.
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An extension of

Dubuc–Deslauriers subdivision

We present here a further method of generating a symbol A ∈ Aµ,ν, i.e. a symmetric,

interpolatory mask symbol of degree at most 2(µ+ν)− 1, and with, according to Propo-

sition 2.5, a zero of order at least 2ν at z = −1. This method, as first introduced in [22],

is based on a local interpolation scheme.

The basic idea described here is to add in a symmetric function sequence {fj : j ∈ Jµ}, to a

basis for the polynomial space π2ν−1, and then design a subdivision scheme by constructing

a sequence of fundamental interpolants, which, when evaluated at 1
2
, as in the Dubuc–

Deslauriers construction (2.12), then yields a symmetric, interpolatory subdivision scheme

that can be considered as an extension of Dubuc–Deslauriers subdivision. Since we are

adding in functions to a basis for the polynomial space π2ν−1, our subdivision scheme will

then also automatically satisfy (2.38).

In Section 5.1 below, we provide a sufficient condition on the above-mentioned sequence

{fj : j ∈ Jµ} to ensure that the subdivision mask of the newly generated subdivision

scheme is in Aµ,ν. Then, in Section 5.2, we choose the sequence of functions {fj : j ∈ Jµ}

as truncated powers and study the resulting simplifications of the general theory. Also,

in specific examples, we investigate the issue of the existence of a corresponding refinable

function, and the convergence of the associated subdivision scheme.
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5.1 The general construction method

In this section we present sufficient conditions on the above-mentioned function sequence

{fj : j ∈ Jµ} in order to generate a subdivision mask symbol A in Aµ,ν.

For n ∈ Z+, let x0 < x1 < . . . < xn be a sequence of points in R, and suppose f is a given

real-valued function with domain Df ⊂ R such that [x0, xn] ⊂ Df. We shall denote by

[x0, . . . , xn]f the n-th order divided difference of f with respect to the points x0, . . . , xn

(see e.g. [56, Chapter I, Section 2.2]). With the conventional definition [x]f := f(x), x ∈

[x0, xn], we then have, for 0 ≤ j < j+ `+ 1 ≤ n, the recursion formula

[xj, . . . , xj+`+1] f =
[xj+1, . . . , xj+`+1] f− [xj, . . . , xj+`]f

xj+`+1 − xj

, (5.1)

that can be used recursively to compute the divided difference [x0, . . . , xn]f. Also, if f has

n continuous derivatives on the interval [x0, xn], then there exists a point ξ ∈ (x0, xn)

such that

[x0, . . . , xn]f =
1

n!
f(n)(ξ). (5.2)

We shall rely on the following lemma to develop the theory.

Lemma 5.1 For m ∈ N, let x0 < x1 < . . . < xm be a sequence of points in R and let

gj : [x0, xm] → R, j ∈ Zm, denote a sequence of functions. Then the determinant sequence

Dk = det(Ak), k ∈ Zm, (5.3)

where the matrices {Ak : k ∈ Zm} are defined by

(Ak)ij = [xi, . . . , xmin{i+k,m}]gj, i, j ∈ Zm, (5.4)

satisfies the relation

Dk =


 ∏

j∈Zm−1−k

(xj − xj+k+1)


Dk+1, k ∈ Zm−1. (5.5)
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Proof. The result (5.5) is obtained by performing successive row subtractions on the

first (m− k) rows of the determinant Dk and using (5.1). �

The following existence result can now be proved.

Theorem 5.2 For µ, ν ∈ N, suppose fj : [−µ− ν+ 1, µ+ ν] → R, j ∈ Jµ, is a sequence

of functions such that the 2µ× 2µ matrix X defined by

(X)ij = [−ν+i,...,ν+i]fj, i, j ∈ Jµ, (5.6)

is invertible. Then the linear space Sµ,ν defined by

Sµ,ν := span{fj : j ∈ Jµ} ⊕ π2ν−1 (5.7)

has dimension (2µ+2ν), and there exists a unique fundamental sequence {Rj : j ∈ Jµ+ν} ⊂

Sµ,ν such that

Rj(k) = δj,k, j, k ∈ Jµ+ν. (5.8)

Also,
∑

j∈Jµ+ν

s(j)Rj = s, s ∈ Sµ,ν. (5.9)

If, moreover,

fj = f1−j(1− ·), j ∈ Jµ, (5.10)

then

Rj = R1−j(1− ·), j ∈ Jµ+ν. (5.11)

Proof. The existence of a unique fundamental sequence {Rj : j ∈ Jµ+ν} ⊂ Sµ,ν satisfying

the interpolatory condition (5.8) will follow if we can prove, for each j ∈ Jµ+ν, the existence

of a unique sequence {βji : i = −µ+ 1, . . . , µ+ 2ν}, such that

∑

i∈Jµ

βji fi(k) +
∑

i∈{µ+N2ν}

βji k
i−µ−1 = δj,k, k ∈ Jµ+ν, (5.12)
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or, equivalently, if we can prove that the determinant D of the coefficient matrix of the
linear system (5.12), which is given by

D =

∣∣∣∣∣∣∣∣∣

f−µ+1(−µ− ν + 1) · · · fµ(−µ− ν + 1) 1 (−µ− ν + 1) · · · (−µ− ν + 1)2ν−1

f−µ+1(−µ− ν + 2) · · · fµ(−µ− ν + 2) 1 (−µ− ν + 2) · · · (−µ− ν + 2)2ν−1

...
...

...
...

...
f−µ+1(µ+ ν) · · · fµ(µ + ν) 1 (µ+ ν) · · · (µ+ ν)2ν−1

∣∣∣∣∣∣∣∣∣
(5.13)

is nonzero.

Now consider the determinant sequence {Dk : k ∈ Zm} of Lemma 5.1, with the choices

m = 2µ+ 2ν− 1, xi = −µ− ν+ 1+ i, i ∈ Zm, and

gj =






fj−µ+1, j ∈ Z2µ−1,

(·)j−2µ, j ∈ {2µ+ Z2ν−1},
(5.14)

where, for n ∈ Z+ and k ∈ Z, we use the notation {k + Zn} to denote the set {k, k +

1, . . . , k + n}. It then follows from (5.13), (5.14), (5.3) and (5.4), that D = D0. Hence,

from (5.5), D is nonzero if and only if

D2ν 6= 0. (5.15)

Using also the property (5.2) of divided differences, we deduce that the determinant D2ν

has the structure

D2ν =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

[−µ−ν+1,...,−µ+ν+1]f−µ+1 · · · [−µ−ν+1,...,−µ+ν+1]fµ 0 0 · · · 0 0

[−µ−ν+2,...,−µ+ν+2] f−µ+1 · · · [−µ−ν+2,...,−µ+ν+2]fµ 0 0 · · · 0 0
...

...
...

...
...

...
[µ−ν,...,µ+ν] f−µ+1 · · · [µ−ν,...,µ+ν]fµ 0 0 · · · 0 0

× · · · × 0 0 · · · 0 1

× · · · × 0 0 · · · 1 ×
...

...
...

...
...

...
× · · · × 0 1 · · · × ×
× · · · × 1 × · · · × ×

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. (5.16)

By exploiting the structure of the zeros and ones in the last 2ν columns of D2ν in (5.16),

we now expand D2v with respect to these columns to deduce from (5.6) that D2ν =

det(X) 6= 0, and from which it then follows that (5.15) does indeed hold.
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For each fixed j ∈ Jµ+ν, the unique solution {βji : i = −µ+ 1, . . . , µ+ 2ν} of the (2µ +

2ν) × (2µ+ 2ν) linear system (5.12) then yields the fundamental function sequence {Rj :

j ∈ Jµ+ν} ⊂ Sµ,ν, as given by

Rj =
∑

i∈Jµ

βji fi +
∑

i∈{µ+N2ν}

βji (·)
i−µ−1, j ∈ Jµ+ν, (5.17)

and which satisfies the interpolation condition (5.8).

According to (5.7), dim(Sµ,ν) ≤ 2µ + 2ν. But the interpolatory condition (5.8) implies

that the set {Rj : j ∈ Jµ+ν} ⊂ Sµ,ν is linearly independent, so that dim(Sµ,ν) ≥ 2µ + 2ν.

Hence dim(Sµ,ν) = 2µ + 2ν, and it immediately follows that the set {Rj : j ∈ Jν+µ} is a

basis for Sµ,ν.

To prove (5.9), suppose s ∈ Sµ,ν. Since {Rj : j ∈ Jµ+ν} is a basis for Sµ,ν, there exists

a unique sequence {βj : j ∈ Jµ+ν} ⊂ R such that s =
∑

j∈Jµ+ν

βjRj. But then (5.8) yields

βj = s(j), j ∈ Jµ+ν, thereby proving (5.9).

Finally, suppose the symmetry condition (5.10) is satisfied. With {`ν,j : j ∈ Jν} denoting

the Lagrange fundamental polynomials in π2ν−1 as defined by (2.8), we now define the

sequence {wj : j ∈ Jµ+ν} ⊂ Sµ,ν by

wj =






fj+ν j ∈ {−ν+ Jµ},

`ν,j−µ, j ∈ {µ+ Jν},
(5.18)

where, for n ∈ Z+ and k ∈ Z, we use the notation {k + Jn} for the set {k − n + 1, k −

n+ 2, . . . , k+n}. Since {`ν,j : j ∈ Jν} is a basis for π2ν−1, it follows from (5.7) and (5.18),

together with the fact that dim(Sµ,ν) = 2µ + 2ν, that {wj : j ∈ Jµ+ν} is also a basis for

Sµ,ν. We claim that

wj = w1−j(1− ·), j ∈ Jµ+ν. (5.19)

To prove this statement, we first note from (5.18) and the symmetry condition (5.10),

that (5.19) holds for j ∈ {−ν + Jµ}. Next, we observe that the Lagrange fundamental

polynomials {`ν,j : j ∈ Jν} are symmetric about 1
2

since, for j ∈ Jν, we have, from (2.8),
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that

`ν,1−j(1− ·) =
∏

1−j6=k∈Jν

1− · − k

1− j− k

=
∏

j6=k∈Jν

1− · − (1− k)

1− j− (1− k)

=
∏

j6=k∈Jν

· − k

j − k
= `ν,j.

Thus (5.19) also holds for j ∈ {µ+ J2ν}. With the definition

R̃j = R1−j(1− ·), j ∈ Jµ+ν, (5.20)

we have R̃j : [µ − ν + 1, µ + ν] → R, j ∈ Jµ+ν, by virtue of the fact that Rj ∈ Sµ,ν, i.e.

Rj : [µ− ν+ 1, µ+ ν] → R, j ∈ Jµ+ν. Moreover, (5.8) and (5.20) imply that

R̃j(k) = δj,k, j, k ∈ Jµ+ν. (5.21)

Since {wj : j ∈ Jµ+ν} is a basis for Sµ,ν, there exists, for every j ∈ Jµ+ν, a sequence

{cj,k : k ∈ Jµ+ν} such that Rj =
∑

k∈Jµ+ν

cj,kwk, and thus, using also (5.19), we get

R̃j =
∑

k∈Jµ+ν

c1−j,kwk(1− ·) =
∑

k∈Jµ+ν

c1−j,1−kwk, j ∈ Jµ+ν,

from which we deduce that R̃j ∈ Sµ,ν, j ∈ Jµ+ν. Since also (5.21) holds, and since

{Rj : j ∈ Jµ+ν} is the unique function sequence in Sµ,ν satisfying (5.8), it follows that R̃j =

Rj, j ∈ Jµ,ν, which, together with (5.20), yields the desired symmetry result (5.11). �

Suppose, for given positive integers µ and ν, we are given a sequence {fj : j ∈ Jµ} that

satisfies the conditions of Theorem 5.2. Analogous to the Dubuc–Deslauriers definition

(2.12), we now define the mask

a2j = δj, j ∈ Z,

a1−2j = Rj

(
1
2

)
, j ∈ Jµ+ν,

aj = 0, j 6∈ Jµ+ν.






(5.22)

The following result then holds.
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Theorem 5.3 If the sequence {fj : j ∈ Jµ} is a sequence as in Theorem 5.2, and such that

the symmetry condition (5.10) is also satisfied, then the Laurent polynomial A defined by

(1.3) and (5.22) belongs to the class Aµ,ν.

Proof. Referring to Definition 2.4, we first observe from (5.22) that the Laurent polyno-

mial A has degree at most 2(µ+ ν) − 1. Next, from the top line of (5.22), together with

Proposition 2.1, we conclude that (2.37) holds.

To prove that the symmetry condition (2.36) is satisfied, we observe from the middle line

of (5.22), together with (5.11), that, for j ∈ Jµ+ν,

a1−2j = Rj

(
1
2

)
= R1−j

(
1
2

)
= a1−2(1−j) = a2j−1.

Hence, noting also the top and bottom equations in (5.22), we get a−j = aj, j ∈ Z, which

is equivalent to the mask symbol symmetry condition (2.36).

Finally, to prove that the polynomial filling property (2.38) holds, let p ∈ π2ν−1. Then,

from the top line of (5.22), we get

∑

k

a2j−2k p(k) = p(j), j ∈ Z. (5.23)

Next, for j ∈ Z, we define qj = p(j+ ·), so that also, qj ∈ π2ν−1. But the definition (5.7)

shows that π2ν−1 ⊂ Sµ,ν, so that q ∈ Sµ,ν. Hence, using (5.22) and (5.9), we get, for

j ∈ Z, that

∑

k

a2j+1−2k p(k) =
∑

k

a2k+1 p(j− k)

=
∑

k

a1−2k p(j+ k)

=
∑

k∈Jµ+ν

a1−2k p(j+ k)

=
∑

k∈Jµ+ν

qj(k)Rk

(
1
2

)
= qj

(
1
2

)
= p

(
2j+1

2

)
,

which, together with (5.23), implies that (2.38) is satisfied. Hence, according to Defini-

tion 2.4, we have A ∈ Aµ,ν. �

95



5.2. The resulting Dubuc–Deslauriers expansion

Observe, from (2.12) and (5.22), that the Dubuc–Deslauriers subdivision scheme Sdn can

be interpreted as the additional case µ = 0 and ν = n in the context of Theorem 5.3, and

that the subdivision scheme (5.22) can therefore be regarded as an extension of Dubuc–

Deslauriers subdivision, as obtained by adding in, according to Theorems 5.2 and 5.3, a

sequence {fj : j ∈ Jµ} to the polynomial space π2ν−1 to form the enlarged space Sµ,ν.

5.2 The resulting Dubuc–Deslauriers expansion

From Theorem 2.7, we know that any mask symbol A ∈ Aµ,ν can be written as a (unique)

linear combination of Dubuc–Deslauriers symbols {Dν+j : j ∈ Zµ}. We proceed to deter-

mine, for the mask symbol A defined by (1.3) and (5.22), the coefficients of the linear

combination (2.65) in terms of the sequence {fj : j ∈ Jµ}. Since the Dubuc–Deslauriers

mask symbols {Dν+j : j ∈ Zµ} in this expansion can be explicitly computed from (2.16)

and (2.13), and since the coefficient sequence {tj : j ∈ Zµ} will be shown below to be

obtainable as the unique solution of a (µ+1)× (µ+1) linear system, we would then have

established an explicit computational method for A that is more efficient than the one

based on the expansion (5.17) and which depends on solving the (2µ+ 2ν) × (2µ + 2ν)

linear system (5.12).

Suppose therefore that {tj : j ∈ Zµ} is, according to Theorems 2.7 and 5.3, the unique

sequence in R such that
∑

j∈Zµ

tj = 1 and A =
∑

j∈Zµ

tjDν+j. Thus, from (1.3) and (5.22),

together with (2.12) and (2.13), we have for z ∈ C \ {0} that

1+
∑

k∈Jµ+ν

Rk

(
1
2

)
z1−2k = A(z) = 1+

∑

k∈Jµ+ν

a1−2kz
1−2k

= 1+
∑

k∈Jµ+ν


∑

j∈Zµ

tj dν+j,1−2k


 z1−2k,

and thus

∑

k∈Jµ+ν

Rk

(
1
2

)
z1−2k =

∑

k∈Jµ+ν


∑

j∈Zµ

tj dν+j,1−2k


 z1−2k, z ∈ C \ {0}, (5.24)
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so that

Rk

(
1
2

)
=

∑

j∈Zµ

tj dν+j,1−2k, k ∈ Jµ+ν. (5.25)

For i ∈ Jµ, we have from (5.7) that fi ∈ Sµ,ν, so that (5.9) and (5.25) yield

fi
(

1
2

)
=

∑

k∈Jµ+ν

fi(k)Rk

(
1
2

)
=

∑

k∈Jµ+ν

fi(k)


∑

j∈Zµ

tj dν+j,1−2k




=
∑

j∈Zµ


 ∑

k∈Jµ+ν

fi(k)dν+j,1−2k


 tj

=
∑

j∈Zµ


 ∑

k∈Jν+j

fi(k) `ν+j,k

(
1
2

)

 tj, (5.26)

by virtue of (2.12). Using also the fact that
∑

j∈Jµ

tj = 1, we deduce from (5.26) that

∑

j∈Zµ


fi
(

1
2

)
−

∑

k∈Jν+j

fi(k) `ν+j,k

(
1
2

)

 tj = 0, i ∈ Jµ. (5.27)

A standard error expression in polynomial interpolation (see e.g. [56, Chapter I, Theo-

rem 2.8]) gives

fi
(

1
2

)
−

∑

k∈Jν+j

fi(k)`ν+j,k

(
1
2

)
= ρν+j

[
1
2

,−ν−j+1,...,ν+j

]
fi, j ∈ Zµ, i ∈ Jµ, (5.28)

where

ρk =
∏

m∈Jk

(
1
2

−m
)

=
(−1)k

24k−2

[
(2k− 1)!

(k− 1)!

]2

, k ∈ N, (5.29)

as follows immediately from (2.15), so that also the recursion formula

ρk+1 = −

(
2k + 1

2

)2

ρk, k ∈ N, (5.30)

is satisfied. Combining (5.27), (5.28), the symmetry (5.10) of the sequence {fj : j ∈ Jµ},

and the fact that
∑

j∈Zµ

tj = 1, we deduce that, in the vector notation

t =




t0
t1
...
tµ


 , b =




1

0
...
0


 , (5.31)
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and with the (µ+ 1) × (µ+ 1) matrix B given by

(B)ij =

{
1, i = 0

ρν+j

[
1
2

,−ν−j+1,...,ν+j

]
fi, i ∈ Nµ,

j ∈ Zµ, (5.32)

we have

Bt = b. (5.33)

We have therefore established, as was done in [22], the following result.

Theorem 5.4 For the mask symbol A ∈ Aµ,ν of Theorem 5.3, the corresponding unique

coefficient sequence t = {tj : j ∈ Zµ} in (2.65) of Theorem 2.7, satisfies the (µ+1)×(µ+1)

linear system (5.33).

We proceed to prove here that the matrix B, as given by (5.32) and (5.29), is invertible,

from which, together with Theorem 5.4, it will then follow that the unique solution t

of the linear system (5.33) yields, through its definition in (5.31), the desired coefficient

sequence {tj : j ∈ Zµ} in the Dubuc–Deslauriers expansion (2.65) of the mask symbol A of

Theorem 5.3.

To this end, we first prove the following implication of the sequence {fj : j ∈ Jµ} satisfying

the conditions of Theorem 5.2.

Proposition 5.5 If, in Theorem 5.2, the symmetry condition (5.10) is also satisfied by

the sequence {fj : j ∈ Jµ}, then the µ× µ matrix H defined by

(H)jk = hjk = [−ν−k+1,...,ν−k+1]fj + [−ν+k,...,ν+k]fj, j, k ∈ Nµ, (5.34)

is invertible.

Proof. According to Theorem 5.2, we know that the 2µ× 2µ matrix X, where

(X)jk = xjk = [−µ−ν+j,...,ν−µ+j]f−µ+k, j, k ∈ N2µ, (5.35)

satisfies det(X) 6= 0. Now define the two 2µ× 2µ matrices U and V by

(U)jk = ujk =

{
xjk − xj,2µ+1−k, k ∈ Nµ,

xjk, k ∈ {µ+ Nµ},
j ∈ N2µ, (5.36)
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and

(V)jk = vjk =

{
ujk + u2µ+1−j,k, j ∈ Nµ,

ujk, j ∈ {µ+ Nµ},
k ∈ N2µ, (5.37)

so that det(X) = det(U) = det(V), and therefore det(V) 6= 0.

Next, we use (5.37), (5.36) and (5.35), together with (5.10) and the fact that a divided

difference is a symmetric function of its arguments, to deduce that, for j, k ∈ Nµ, we have

vjk = ujk + u2µ+1−j,k

= gjk − gj,2µ+1−k + g2µ+1−j,k − g2µ+1−j,2µ+1−k

= [−µ−ν+j,...,ν−µ+j]f−µ+k − [−µ−ν+j,...,ν−µ+j]fµ+1−k

+[−ν+µ+1−j,...,µ+ν+1−j]f−µ+k − [−ν+µ+1−j,...,µ+ν+1−j]fµ+1−k

= [−ν+µ+1−j,...,µ+ν+1−j]fµ+1−k − [−µ−ν+j,...,ν−µ+j]fµ+1−k

+[−µ−ν+j,...,ν−µ+j]fµ+1−k − [−ν+µ+1−j,...,µ+ν+1−j]fµ+1−k

= 0,

and thus, from a standard block-partitioned matrix result for determinants (see e.g. [34,

Chapter 2, Section 5]), we obtain

det(V) = (−1)µdet(M)det(N), (5.38)

where the µ× µ matrices M and N are defined by

(M)jk = mjk = vj,µ+k, j, k ∈ Nµ, (5.39)

(N)jk = njk = vµ+j,k, j, k ∈ Nµ. (5.40)

Since det(V) 6= 0, we conclude from (5.38) that det(M) 6= 0. But, from (5.39), (5.37),

(5.36) and (5.35), we find that, for j, k ∈ Nµ,

mjk = uj,µ+k + u2µ+1−j,µ+k

= xj,µ+k + x2µ+1−j,µ+k

= [−µ−ν+j,...,ν−µ+j]fk + [−ν+µ+1−j,...,µ+ν+1−j]fk. (5.41)
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Next we define P = MT , so that, from (5.41),

(P)jk = [−µ−ν+k,...,ν−µ+k]fj + [−ν+µ+1−k,...,µ+ν+1−k]fj, j, k ∈ Nµ. (5.42)

Then det(P) = det(M), and thus det(P) 6= 0. Finally, observe from (5.34) and (5.42) that

(H)jk = (P)j,µ+1−k, j, k ∈ Nµ,

and thus det(H) = (−1)bµ/2cdet(P). Hence det(H) 6= 0, i.e. H is invertible. �

Using Proposition 5.5, we can now prove the invertibility of the matrix B.

Theorem 5.6 If, in Theorem 5.2, the symmetry condition (5.10) is also satisfied by the

sequence {fj : j ∈ Jµ}, then the matrix B defined by (5.32) and (5.29) is invertible.

Proof. First, we use (5.28) in the definition (5.32) of the matrix B, to deduce, by

subtracting successive columns in det(B), that det(B) = (−1)µdet(C), where C is the

µ× µ matrix defined by

(C)jk = pjk

(
1
2

)
− pj,k−1

(
1
2

)
, j, k ∈ Nµ, (5.43)

and with pjk denoting, for k ∈ Nµ, the (unique) polynomial in π2(ν+k)−1 that interpolates

fj on the set Jν+k. Hence it will suffice to prove that det(C) 6= 0, for then det(B) 6= 0,

and thus B is invertible.

From the Newton divided difference formula in polynomial interpolation (see e.g. [56,

Chapter I, Theorem 2.6]), we have, for j, k ∈ Nµ, that

pjk − pj,k−1 = [−ν−k+1,...,ν+k−1]fj
∏

`∈Jν+k−1

(· − `) + [−ν−k+1,...,ν+k]fj

ν+k−1∏

`=−ν−k+1

(· − `),

which, together with (5.43), yields

(C)jk = ρν+k−1

[
(ν+ k − 1

2
)[−ν−k+1,...,ν+k]fj + [−ν−k+1,...,ν+k−1]fj

]
, j, k ∈ Nµ, (5.44)

where ρk is defined by (5.29). But, using (5.1), we have

[−ν−k+1,...,ν+k]fj =
1

2ν+ 2k − 1

(
[−ν−k+2,...,ν+k]fj − [−ν−k+1,...,ν+k−1]fj

)
, j, k ∈ Nµ,
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which, together with (5.44), yields

(C)jk = 1
2
ρν+k−1

(
[−ν−k+1,...,ν+k−1]fj + [−ν−k+2,...,ν+k]fj

)
, j, k ∈ Nµ. (5.45)

Hence,

det(C) =
1

2µ


∏

k∈Nµ

ρν+k−1


 det(E), (5.46)

where E is the µ× µ matrix defined by

(E)jk = ejk = [−ν−k+1,...,ν+k−1]fj + [−ν−k+2,...,ν+k]fj, j, k ∈ Nµ. (5.47)

It will therefore suffice to prove that det(E) 6= 0, since then (5.46) gives det(C) 6= 0. We

claim that the columns of the matrix E are related to the columns of the matrix H, as

defined by (5.34), by the equations

ejk =






hjk, k = 1,

λk


hjk +

∑

i∈Nk−1

ηkihji


 , k = 2, . . . , µ,

j ∈ Nµ, (5.48)

where, for k = 2, . . . , µ,

ηki = (−1)i+k

[(
2k− 2

k− i

)
−

(
2k − 2

k− i− 1

)]
, i ∈ Nk−1, (5.49)

and where

λk =
∏

i∈N2k−2

1

2ν+ i
. (5.50)

To prove (5.48), we first note from (5.47) and (5.34) that

ej1 = hj1, j ∈ Nµ,

so that (5.48) holds for k = 1. Now, for k ∈ {2, . . . , µ} and j ∈ Nµ, we find, by applying

the recursive formula (5.1) repeatedly to the right-hand side of (5.47), and by recalling

101



5.2. The resulting Dubuc–Deslauriers expansion

the definition (5.34), that

ejk

λk

=
∑

i∈Z2k−2

(−1)i

(
2k− 2

i

)
[−ν−k+1+i,...,ν−k+1+i]fj

+
∑

i∈Z2k−2

(−1)i

(
2k− 2

i

)
[−ν−k+2+i,...,ν−k+2+i]fj

=
∑

i∈Z2k−2

(−1)i

(
2k− 2

i

)
[−ν−k+1+i,...,ν−k+1+i]fj

+
∑

i∈Z2k−2

(−1)i

(
2k− 2

2k− 2− i

)
[−ν+k−i,...,ν+k−i]fj

=
∑

i∈Z2k−2

(−1)i

(
2k− 2

i

)(
[−ν−k+1+i,...,ν−k+1+i]fj + [−ν+k−i,...,ν+k−i]fj

)

= hjk +
∑

i∈Nk−1

(−1)i

(
2k− 2

i

)(
[−ν−k+1+i,...,ν−k+1+i]fj + [−ν+k−i,...,ν+k−i]fj

)

+
∑

i∈{k+Zk−2}

(−1)i

(
2k − 2

i

)(
[−ν−k+1+i,...,ν−k+1+i]fj + [−ν+k−i,...,ν+k−i]fj

)

= hjk +
∑

i∈Nk−1

(−1)i+k

(
2k− 2

k− i

)(
[−ν−i+1,...,ν−i+1]fj + [−ν+i,...,ν+i]fj

)

+
∑

i∈Nk−1

(−1)i+k+1

(
2k− 2

i+ k − 1

)(
[−ν+i,...,ν+i]fj + [−ν−i+1,...,ν−i+1]fj

)

= hjk +
∑

i∈Nk−1

(−1)i+k

(
2k− 2

k− i

)
hji +

∑

i∈Nk−1

(−1)i+k+1

(
2k− 2

i+ k − 1

)
hji

= hjk +
∑

i∈Nk−1

(−1)i+k

[(
2k− 2

k− i

)
−

(
2k− 2

k− i− 1

)]
hji,

thereby proving (5.48) also for j ∈ Nµ and k ∈ {2, . . . , µ}.

It follows from (5.48) that det(E) =

[
µ∏

k=2

λk

]
det(H). Since Proposition 5.5 gives

det(H) 6= 0, and since (5.50) implies that λk 6= 0, k = 2, . . . , µ, we therefore also have

det(E) 6= 0. �

Combining the results of Theorem 5.4 and 5.6, we immediately deduce the following result.

Corollary 5.7 The Dubuc–Deslauriers expansion coefficient sequence t = {tj : j ∈ Zµ}
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of Theorem 5.4, can be obtained as the unique solution of the (µ + 1) × (µ + 1) linear

system (5.33).

We conclude that the computational algorithm for the mask symbol A ∈ Aµ,ν, based on

(1.3), (5.22), (2.65), (2.13) and (2.16), and in which we have to solve the (µ+ 1)× (µ+ 1)

linear system (5.33) to compute the coefficient sequence {tj : j ∈ Zµ} in (2.65), is more

efficient than the one obtained from the algorithm based on (1.3), (5.22), (5.17) and the

solving of the (2µ+ 2ν) × (2µ+ 2ν) linear system (5.12) to compute, for each j ∈ Jµ+ν,

the coefficient sequence {βji : i = −µ+ 1, . . . , µ+ 2ν} in (5.17).

We proceed to consider the special case µ = 1 of Theorem 5.3. Writing f = f1, we deduce

from Corollary 5.7 and Theorem 2.7 that the resulting mask symbol A, as defined by (1.3)

and (5.22), is in A1,ν, and is given by

A = t0Dν + t1Dν+1, (5.51)

where t = (t0, t1) is the unique solution of the 2× 2 linear system

Bt =

[
1 1

ρν

[
1
2

,−ν+1,...,ν

]
f ρν+1

[
1
2

,−ν,...,ν+1

]
f

] [
t0
t1

]
=

[
1

0

]
, (5.52)

so that [
t0
t1

]
=

1

det(B)



ρν+1

[
1
2

,−ν,...,ν+1

]
f −1

−ρν

[
1
2

,−ν+1,...,ν

]
f 1



[
1

0

]
. (5.53)

Now observe, from the proof of Theorem 5.6, that, since µ = 1, and using also (5.46) and

(5.47), we have

det(B) = −det(C) = − 1
2
ρν det(E) = −1

2
ρν

( [
1
2

,−ν,...,ν

]
f+

[
1
2

,−ν+1,...,ν+1

]
f
)
. (5.54)

It follows from (5.53), (5.54), and (5.30) that

t0 =
(2ν+ 1)2

2

[
1
2

,−ν,...,ν+1

]
f

[−ν,...,ν]f+ [−ν+1,...,ν+1]f
, (5.55)

t1 = 2

[
1
2

,−ν+1,...,ν

]
f

[−ν,...,ν]f+ [−ν+1,...,ν+1]f
. (5.56)

We will use the explicit formulation (5.51), (5.55), (5.56) of the mask symbol A, together

with (2.13) and (2.16), for specific choices of f and ν in the following section.
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5.3 The case where {fj : j ∈ Jµ} are chosen as truncated powers

In this section we make a specific choice of the sequence {fj : j ∈ Jµ} in Theorem 5.2, and

apply the analysis of Sections 5.1 and 5.2.

We will need the following facts from the theory of spline functions on arbitrary knot

sequences (see e.g. [56, Chapter II, Section 2] or [57, Chapter 19 and 20]).

For a given m ∈ N, and a partition Π = {xj : j ∈ Z} of R, where xj < xj+1, j ∈ Z, we

define the spline space Sm(Π) of order m and with respect to the partition Π as the set

Sm(Π) =
{
s ∈M(R) : s|[xj,xj+1) ∈ πm−1; s ∈ C

m−2(R)
}
.

Then, with the definition

Nm,j(x) = (−1)m(xj+m − xj) [xj, . . . , xj+m] (x− ·)m−1
+ , x ∈ R, m ∈ N, (5.57)

we have, for m ∈ N, that the following properties are satisfied:

Nm,j =
(
xj+m − xj

) ∑

k∈{j+Zm}

bj,k

(
· −xk

)m−1

+
,

where

bj,k =
∏

k 6=`∈{j+Zm}

1

(x` − xk)
, k ∈ {j+ Zm},






j ∈ Z; (5.58)

Nm,j ∈ Sm(Π), j ∈ Z;

Nm,j(x) = 0, x 6∈ (xj, xj+m), j ∈ Z, (m ≥ 2); (5.59)

Nm,j(x) > 0, x ∈ (xj, xj+m), j ∈ Z; (5.60)

∑

j

Nm,j(x) = 1, x ∈ R;

Nm,j =
· − xj

xj+m−1 − xj

Nm−1,j +
xj−m − ·

xj−m − xj+1

Nm−1,j+1, j ∈ Z, (m ≥ 2). (5.61)

Moreover, the sequence {Nm,j : j ∈ Z} is a basis for Sm(Π) in the sense that, for every

s ∈ Sm(Π), there exists a unique sequence c ∈M(Z) such that s =
∑

j

cjNm,j. If, for a
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given integer ` ∈ Z, we have xj = `+ j, j ∈ Z, so that Π = Z, then

Nm,j = Nm(· − `− j), j ∈ Z, (5.62)

with Nm denoting the cardinal B-spline of order m, as introduced in Section 1.2. The

sequence {Nm,j : j ∈ Z} is called the the sequence of m-th order B-splines with respect to

the knot sequence Π. Note in particular from (5.57) that, for a fixed j ∈ Z, the B-spline

Nm,j depends only on the finite knot sequence {xj, . . . , xj+m}. Also, from (5.57) and (5.58),

we deduce, for m ≥ 3 and k ∈ Nm−2, the differentiation formulas

N
(k)

m,j(x) = (−1)m (m− 1)!

(m− 1− k)!
(xj+m − xj) [xj, . . . , xj+m] (x − ·)m−1−k

+ , x ∈ R, (5.63)

and

N
(k)

m,j =
(m − 1)!

(m− 1− k)!
(xj+m − xj)

∑

k∈{j+Zm}

bj,k

(
· −xk

)m−1−k

+
, (5.64)

with bj,k as in the second equation in (5.58).

As an example of the sequence {fj : j ∈ Jµ}, which, in the context of Theorem 5.3, yields

the mask symbol A ∈ Aµ,ν by means of (1.3) and (5.22), we now choose, as was done in

[22], the truncated powers

fj = (ξj − ·)2ν−1
+ , j ∈ Nµ, (5.65)

fj = f1−j(1− ·), j = −µ+ 1, . . . , 0, (5.66)

where
ξj ∈

(
1
2
, ν+ j

)
, j ∈ Nµ,

ξj < ξj+1, j ∈ Nµ−1, (if µ ≥ 2).





(5.67)

The following result then shows that this choice is indeed an admissible one.

Proposition 5.8 For µ, ν ∈ N, with µ ≤ ν, if the sequence {fj : j ∈ Jµ} is defined by

(5.65), (5.66), and (5.67), then the matrix X defined by (5.6) is invertible.
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Proof. First observe from (5.65), (5.66), (5.67), (5.57) and (5.62), with ` = −ν, that if

we define the 2µ× 2µ matrix Y by

(Y)ij =






N2ν(ξj + ν− i), j ∈ Nµ,

N2ν(1− ξ1−j + ν− i), j = −µ+ 1, . . . , 0,
i ∈ Jµ, (5.68)

then, from (5.6), we have det(X) = (−1)ν(2ν)−µ2

det(Y). Hence our proof will be complete

if we can show that det(Y) 6= 0. According to the Schoenberg–Whitney Theorem [57,

Theorem 19.4], we know that the matrix Y defined by (5.68) satisfies det(Y) 6= 0 if and

only if
N2ν(ξj + ν− j) > 0, j ∈ Nµ,

N2ν(1− ξ1−j + ν− j) > 0, j = −µ+ 1, . . . , 0.





(5.69)

But, from (5.67) and the fact that µ ≤ ν, we have

1
2
≤ 1

2
+ ν− µ < ξj + ν− j < (ν+ j) + ν− j = 2ν, j ∈ Nµ,

and, for j = −µ+ 1, . . . , 0,

0 = 1−
(
ν+ (1− j)

)
+ ν− j < 1− ξ1−j + ν− j < 1

2
+ ν− j ≤ ν+ µ− 1

2
≤ 2ν− 1

2
.

Thus
ξj + ν− j ∈ (0, 2ν), j ∈ Nµ,

1− ξ1−j + ν− j ∈ (0, 2ν), j = −µ+ 1, . . . , 0,






which, together with (1.18), shows that the Schoenberg–Whitney condition (5.69) is in-

deed satisfied. Hence det(Y) 6= 0. �

Combining the results of Proposition 5.8 and Theorem 5.3, we deduce the following.

Corollary 5.9 For µ, ν ∈ N, with µ ≤ ν, if the mask symbol A defined by (1.3)

and (5.22) is based on the choice (5.65), (5.66), (5.67) of the sequence {fj : j ∈ Jµ} in

Theorem 5.2, then A ∈ Aµ,ν.

We can now use Corollary 5.7 to calculate the coefficients {tj : j ∈ Z} of the Dubuc–

Deslauriers expansion (2.65) of the mask symbol A ∈ Aµ,ν of Corollary 5.9. To this
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end, we first use the definition (5.57) to define the sequence

Ñ2j = N2j,−j+1 ∈ S2j(Π̃), j ∈ N, (5.70)

where the partition Π̃ = {x̃k : k ∈ Z} of R is defined by

x̃k =






k, k ≤ 0,

1
2
, k = 1,

k − 1, k ≥ 2.

(5.71)

Note from (5.70), (5.59) and (5.60) that

Ñ2j(x) = 0, x 6∈ (−j+ 1, j), j ∈ N, (5.72)

Ñ2j(x) > 0, x ∈ (−j+ 1, j), j ∈ N. (5.73)

Also, the B-spline Ñ2j is symmetric about 1
2
, i.e.

Ñ2j(1− ·) = Ñ2j, j ∈ N, (5.74)

as is proved by using (5.57) and the fact that a divided difference is a symmetric function

of its arguments.

It then follows from (5.32), (5.70), and (5.63) that, for the mask symbol A ∈ Aµ,ν of

Corollary 5.9, the coefficient sequence t = {tj : j ∈ Zµ} in the Dubuc–Deslauriers expansion

(2.65) is the unique solution t of the (µ+ 1)× (µ+ 1) linear system (5.33), where, using

again also the fact that a divided difference is a symmetric function of its arguments, the

matrix B is given by

(B)ij =






1, i = 0,

ρν+j

(2ν− 1)!

(2ν+ 2j− 1)(2ν+ 2j− 1)!
Ñ

(2j)

2ν+2j(ξi), i ∈ Nµ,
j ∈ Zµ,

or, equivalently, using also (5.29),

(B)ij =






1, i = 0,

(−1)ν+j(2ν− 1)!

24ν+4j−2

(
2ν+ 2j− 2

ν+ j − 1

)
Ñ

(2j)

2ν+2j(ξi), i ∈ Nµ,
j ∈ Zµ, (5.75)
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with the convention that
(

0

0

)
= 1. We are indebted to Charles Micchelli for pointing out to

us that, in the case where the sequence {fj : j ∈ Jµ} is given by (5.65), (5.66), the second

line of (5.32) can be expressed in terms of B-spline derivatives, as in (5.75), thereby

eventually leading to the useful existence and convergence criterium in Theorem 5.10

below, as based on (5.82), together with (5.77), (5.78), (5.51) and (2.35).

Hence, for the mask symbol A ∈ Aµ,ν, of Corollary 5.9, the coefficient sequence {tj : j ∈

Zµ} in the Dubuc–Deslauriers expansion (2.65) of A can be computed by solving the linear

system (5.33), with B, t and b as given by (5.75) and (5.31).

The existence of a corresponding refinable function φ, and the convergence of the asso-

ciated subdivision scheme Sa can then be studied by, for example, investigating whether

the sufficient conditions of either Theorem 2.2 or Theorem 4.8 are satisfied by A.

We shall consider here the case µ = 1, ν ∈ N, of Corollary 5.9. In this case A has the

form (5.51), where, writing f = f1 and ξ = ξ1, we find from (5.55), (5.56), (5.65), (5.66),

(5.57) and (5.63), that with

ξ = ξ1 ∈
(

1
2
, ν+ 1

)
, (5.76)

the formulas

t0 = t0(ξ) =
1

2

Ñ ′′
2ν+2(ξ)

N2ν(ξ+ ν) +N2ν(ξ+ ν− 1)
, (5.77)

t1 = t1(ξ) =
4ν

2ν− 1

Ñ2ν(ξ)

N2ν(ξ+ ν) +N2ν(ξ+ ν− 1)
, (5.78)

are satisfied.

For ξ ∈
(

1
2
, ν+ 1

)
, we now observe from (5.51), (4.1) and Proposition 4.2 (with n = ν+1),

together with (5.78), that, for ν ∈ N, the mask A ∈ A1,ν in Corollary 5.9 satisfies the

positivity condition (2.23) of Theorem 2.2 if

−1
2
(2ν− 1) ≤

Ñ2ν(ξ)

N2ν(ξ+ ν) +N2ν(ξ+ ν− 1)
≤
2ν− 1

4ν
, (5.79)

whereas, if Ñ ′′
2ν+2(ξ) < 0, then A has two zeros on the unit circle in C.
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Since −1
2
(2ν − 1) ≤ 0, ν ∈ N, we deduce from (5.70), (5.60) and (1.18) that the left-

hand inequality in (5.79) holds for all ξ ∈
(

1
2
, ν+ 1

)
. Also, from (5.72), we see that the

right-hand side inequality in (5.79) holds for ξ ∈ [ν, ν+ 1), with, from (5.78),

t1(ξ) = 0, ξ ∈ [ν, ν+ 1). (5.80)

Next, since Theorem 2.7 gives t0 = 1 − t1, we deduce from (5.79) and (5.77), and

using (1.18) once again, that the right-hand inequality in (5.79) holds if and only if

ξ ∈
(

1
2
, ν+ 1

)
is such that

Ñ ′′
2ν+2(ξ) ≥ 0. (5.81)

But, from [56, Chapter II, Theorem 2.5], together with the definition (5.70), we conclude

that there exists exactly one point ξ∗ν ∈
(

1
2
, ν+ 1

)
such that

Ñ ′′
2ν+2(ξ)






< 0, 1
2
< ξ < ξ∗ν,

= 0, ξ = ξ∗ν,

> 0, ξ∗ν < ξ < ν+ 1.

(5.82)

Next, we use (5.77) and (5.78), together with the fact that t0 = 1 − t1, and since also

Ñ2ν(ν) = 0 from (5.72), to obtain

Ñ ′′
2ν+2(ν) = 2N2ν(2ν− 1) > 0, ν ∈ N, (5.83)

by virtue also of (1.17) and (1.18). It then follows from (5.83) and (5.82) that

ξ∗ν ∈
(

1
2
, ν
)
. (5.84)

In particular, combining the results (5.77) – (5.84), and recalling also from (2.13) and

(2.16) that deg(Dn) = 2n− 1, n ∈ N, we have therefore established the following result.

Theorem 5.10 For ν ∈ N, let A ∈ A1,ν denote the mask symbol obtained by setting µ =

1 in Corollary 5.9. With ξ∗ν denoting the unique point in
(

1
2
, ν
)

such that Ñ ′′
2ν+2(ξ

∗
ν) = 0,
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we have that, if the condition ξ ∈ [ξ∗ν, ν+ 1) holds, then A satisfies the conditions of

Theorem 2.2 with

n =






ν+ 1, ξ∗ν ≤ ξ < ν,

ν, ν ≤ ξ < ν+ 1,
(5.85)

whereas, if ξ ∈
(

1
2
, ξ∗ν
)
, then A has two zeros on the unit circle in C. Moreover,

A =






Dν+1, ξ = ξ∗ν,

Dν, ξ ∈ [ν, ν+ 1).

Examples. We proceed to consider the special cases ν = 1 and ν = 2 of Theorem 5.10.

(a) First, setting ν = 1 in Theorem 5.10, we seek the unique point ξ∗1 ∈
(

1
2
, 1
)

which is

such that

Ñ ′′
4 (ξ∗1) = 0. (5.86)

But, since t0 + t1 = 1, we deduce from (5.77) and (5.78) that (5.86) holds if and only if

ξ∗1 ∈
(

1
2
, 1
)

is such that

N2(2ξ
∗
1)

N2(ξ
∗
1 + 1) +N2(ξ

∗
1)

=
1

4
, (5.87)

since also, from (5.70), we have that Ñ2 = N2(2·). It follows from (5.87) and (1.23) that

2− 2ξ∗1[
2− (ξ∗1 + 1)

]
+ ξ∗1

=
1

4
,

and thus ξ∗1 = 7
8
.

Hence, according to Theorem 5.10, the condition ξ ∈
[

7
8
, 2
)

guarantees that the mask

symbol A ∈ A1,1 of that theorem satisfies the conditions of Theorem 2.2 with

n =






2, 7
8
≤ ξ < 1,

1, 1 ≤ ξ < 2.

Moreover, A = D2 if ξ = 7
8
, and A = D1 if ξ ∈ [1, 2).

Now recall from Section 4.3.1(a), and according to (4.58), (5.51) and (5.78) and the fact

that Ñ2 = N2(2·), that our mask A considered here satisfies the conditions of Theorem 4.8

if and only if ξ ∈
(

1
2
, 2
)

is such that |t1(ξ)| < 2, i.e.

−
1

2
<

N2(2ξ)

N2(ξ+ 1) +N2(ξ)
<
1

2
. (5.88)
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From (1.18), we see that the left-hand inequality of (5.88) holds for all ξ ∈
(

1
2
, 2
)
, whereas,

if ξ ∈ [1, 2), then (1.17) yields N2(2ξ) = 0, so that the right-hand inequality of (5.88)

holds. If ξ ∈
(

1
2
, 1
)
, then (1.23) shows that

N2(2ξ)

N2(ξ+ 1) +N2(ξ)
=

2− 2ξ[
2− (ξ+ 1)

]
+ ξ

= 2− 2ξ,

i.e. the right-hand inequality in (5.88) holds if and only if ξ ∈
(

3
4
, 1
)
.

Hence |t(ξ)| = |t1(ξ)| < 2 if and only if ξ ∈
(

3
4
, 2
)
, so that our Theorem 4.8 actually

extends the existence and convergence ξ-interval from ξ ∈
[

7
8
, 2
)

to ξ ∈
(

3
4
, 2
)

and where

the interval ξ ∈
(

3
4
, 7

8

)
, according to Theorem 5.10, produces mask symbols A with zeros

on the unit circle in C.

For ξ = 13
16

∈
(

3
4
, 7

8

)
, it follows from (5.78) that

t1
(

13
16

)
= 4

N2

(
13
8

)

N2

(
29
16

)
+N2

(
13
16

) =
3

2
,

and thus t0
(

13
16

)
= 1 − t1

(
13
16

)
= −1

2
, which, together with (5.51) and (4.1) with n = 2,

yields once again the mask symbol (4.13), as given by

A(z) = A
(

3
2
|z
)

= − 3
32
z−3 + 19

32
z−1 + 1+ 19

32
z− 3

32
z3, z ∈ C \ {0}, (5.89)

and with corresponding refinable function φ plotted in Figure 4.1. Here we illustrate the

associated convergent subdivision scheme in Figure 5.1

(b) Next, we set ν = 2 in Theorem 5.10, and proceed to seek the unique point ξ∗2 ∈
(

1
2
, 2
)

which is such that Ñ ′′
6 (ξ∗2) = 0, i.e., from (5.74), we shall seek the unique point

η∗2 ∈
(
−1, 1

2

)
which is such that Ñ ′′

6 (η∗2) = 0, and then set ξ∗2 = 1 − η∗2. From (5.70), we

therefore need to find the point η∗2 ∈
(
−1, 1

2

)
such that N ′′

6,−2(η
∗
2) = 0, which, from the

differentiation formula (5.64), and since the partition Π = Π̃ = {x̃k : k ∈ Z} is defined by

(5.71), is equivalent to the equation

0∑

k=−2

[
4∏

k 6=`=−2

1

x̃` − x̃k

]
(
η∗2 − x̃k

)3
+

= 0, (5.90)
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(a) c(0) (∗) and c(1) (◦) (b) c(1) (∗) and c(2) (◦) (c) c(0) (∗) and c(6) (–) (d) limit curve

Figure 5.1: Illustration of subdivision with mask symbol (5.89)

where

x̃−2 = −2, x̃−1 = −1, x̃0 = 0, x̃1 = 1
2
, x̃2 = 1, x̃3 = 2, x̃4 = 3. (5.91)

To solve (5.90), we first consider the possibility η∗2 ∈ (−1, 0). But then the equation (5.90)

is given by
−1∑

k=−2

[
4∏

k 6=`=−2

1

x̃` − x̃k

]
(
η∗2 − x̃k

)3
= 0,

or, equivalently,

1

300

(
η∗2 + 2

)3
−
1

36

(
η∗2 + 1

)3
= 0,

so that

η∗2 =

3

√
25
3

− 2

1− 3

√
25
3

≈ −0.0267,

which is indeed in the correct interval (−1, 0). It follows that

ξ∗2 = 1− η∗2 =
3− 2 3

√
25
3

1− 3

√
25
3

≈ 1.0267

is the unique point in
(

1
2
, 2
)

such that Ñ ′′
6 (ξ∗2) = 0. Hence, from Theorem 5.10, we deduce

that our mask symbol A ∈ A1,2 satisfes the conditions of Theorem 2.2 if ξ ∈ [ξ∗2, 3) ≈

[1.0267, 3), with

n =






3, ξ∗2 ≤ ξ < 2,

2, 2 ≤ ξ < 3,
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Chapter 5. An extension of Dubuc–Deslauriers subdivision

and where A = D3 if ξ = ξ∗2, and A = D2 if ξ ∈ [2, 3).

If ξ ∈
(

1
2
, ξ∗2
)
, it follows from (5.82), (5.77), (5.78), and the condition t0(ξ) + t1(ξ) = 1,

that t(ξ) = t1(ξ) > 1, and thus, from (5.51) and Proposition 4.2 (with n = 3), we

deduce that A then has two zeros on the unit circle in C. According to example (b) in

Section 4.3.1, the conditions of Theorem 4.8 are satisfied by A, as given by (5.51), (5.77),

(5.78) and (5.70), if and only if

−4 <
N4,−1(ξ)

N4(ξ+ 2) +N4(ξ+ 1)
< 2. (5.92)

From (1.18) and (5.74), we see that it suffices to find η ∈
(
−1, 1

2

)
such that the inequality

N4,−1(η) − 2
[
N4(η+ 2) +N4(η+ 1)

]
< 0 (5.93)

is satisfied, having also noted from (1.17) and (5.72) that the inequality (5.92) holds, with

the expression in the middle of (5.92) equalling zero if η ∈ (−2,−1].

Using (5.58) and (1.13), we find that (5.93) is equivalent to the inequality

0∑

k=−1

[
3∏

k 6=`=−1

1

x̃` − x̃k

]
(
η− x̃k

)3
+

− 2

[
∑

k∈Z1

(−1)k

(
4

k

)(
η+ 2− k

)3
+

+
(
η+ 1

)3
+

]
< 0,

(5.94)

with the knot sequence {x̃k : k ∈ {−2+Z6}} as given by (5.91), so that (5.94) is equivalent

to

−η3
+ + 7

(
η+ 1

)3
+

− 2
(
η+ 2

)3

+
< 0. (5.95)

A routine calculus procedure now shows that the inequality (5.95) holds for all η ∈
(
−1, 1

2

)
, thereby proving that (5.92) holds for all ξ ∈

(
1
2
, 3
)
.

Our result of Theorem 4.8 therefore extends the existence and convergence interval ξ ∈

[ξ∗2, 3) ≈ [1.0267, 3), as obtained from Theorems 5.10 and 2.2, to ξ ∈
(

1
2
, 3
)
, which is the

entire range of ξ under consideration in this example.

For example, setting ξ = 2
3
∈
(

1
2
, 3
)

and ν = 2 in (5.78), yields

t1
(

2
3

)
=
8

3

N4,−1

(
2
3

)

N4

(
8
3

)
+N4

(
5
3

) =
880

459
,
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5.3. The case where {fj : j ∈ Jµ} are chosen as truncated powers

and since t0
(

2
3

)
= 1− t1

(
2
3

)
= −421

459
, we find from (5.51), (2.18) and (2.19) that

A(z) =
1

2448

(
55 z−5 − 318 z−3 + 1487 z−1 + 2448+ 1487 z− 318 z3 + 55 z5

)
, z ∈ C \ {0}.

(5.96)

The corresponding refinable function φ and the associated convergent subdivision scheme

are illustrated in Figures 5.2 and 5.3, respectively.

−5 0 5
−0.2

0

0.2

0.4

0.6

0.8

1

Figure 5.2: Refinable function with mask symbol (5.96)

(a) c(0) (∗) and c(1) (◦) (b) c(1) (∗) and c(2) (◦) (c) c(0) (∗) and c(6) (–) (d) limit curve

Figure 5.3: Illustration of subdivision with mask symbol (5.96)
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Dubuc–Deslauriers subdivision

for finite sequences

The subdivision schemes of the previous chapters are all based on the availability of

a bi-infinite initial sequence c in (1.4), as is the case, for example, if c is a periodic

sequence. However, in applications one is often confronted with finite initial sequences,

in which case modifications of the subdivision scheme are required to accommodate the

boundaries. Following [21], we present a method of adapting the Dubuc–Deslauriers

subdivision scheme Sdn , as introduced in Section 2.2, to be applicable when the initial

sequence c in (1.4) is finite.

For the remaining part of this thesis, we shall use, for n ∈ N, the simpified notation

φ = φD
n ; S = Sdn ; dj = dn,j, j ∈ Jn; `j = `n,j, j ∈ Jn. (6.1)

We base our construction on a multi-scale sequence of fundamental interpolants {φr
j }

defined on a bounded interval. Away from the boundaries the integer shifts of the original

functions φ suffice, while the adjustments in the proximity of the boundaries preserve

the polynomial reproduction property (2.63) of φ. The resulting adapted interpolatory

subdivision scheme, which corresponds to Dubuc–Deslauriers subdivision away from the

boundaries, then also preserves the polynomial filling property (2.14) of the subdivision

scheme S. In fact, most results derived in this paper depend on these polynomial filling

or polynomial reproduction properties.
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6.1. Construction of a modified scheme

6.1 Construction of a modified scheme

We first adapt the Dubuc–Deslauriers refinable functions to accommodate the boundaries

of an interval and then use these adapted refinable functions construct a corresponding

subdivision scheme for finite sequences.

For n ∈ N, we derive the specific properties of these refinable functions from the Dubuc–

Deslauriers refinable function φ = φD
n of Section 2.3, with appropriate modifications near

the boundaries.

With n ∈ N, as in Section 2.2, let L be a positive integer with L ≥ 4n− 2, and let r be a

nonnegative integer. On the basis of Theorems 2.2 and 2.6, and the subsequent equation

(2.61), we seek to construct a sequence {φr
j } = {φr

j : j ∈ Z2rL, r ∈ Z+} such that, for each

fixed r ∈ Z+,

φr
j ∈ C[0, 2rL], j ∈ Z2rL; (6.2)

φr
j(x) = 0, x 6∈






[0, 2n− 1+ j), j ∈ Z2n−1,

(−2n+ 1+ j, 2n− 1+ j), j = 2n, . . . , 2rL− 2n,

(−2n+ 1+ j, 2rL], j = 2rL− 2n+ 1, . . . , 2rL;

(6.3)

φr
j(k) = δj,k, j, k ∈ Z2rL; (6.4)

∑

j∈Z2rL

p(j)φr
j(x) = p(x), x ∈ [0, 2rL], p ∈ π2n−1; (6.5)

φr
j(x) =

∑

k∈Z
2r+1L

φr
j

(
k
2

)
φr+1

k (2x), x ∈ [0, 2rL], j ∈ Z2rL. (6.6)

Denoting the linear space of finite real sequences c = {cj : j ∈ Z2rL} by Mr, i.e., Mr =

R2rL+1, we define the subdivision operator sequence {Sr : r ∈ Z+} for Sr :Mr → Mr+1, by

(Src)j =
∑

k∈Z2rL

φr
k

(
j

2

)
ck, j ∈ Z2r+1L, r ∈ Z+. (6.7)

116



Chapter 6. Dubuc–Deslauriers subdivision for finite sequences

The corresponding subdivision scheme is defined by

c(0) = c ∈M0, c(r) = Sr−1c
(r−1), r ∈ N, (6.8)

or, equivalently,

c(0) = c, c(r) = Sr−1(. . . (S1(S0c) · · · ), r ∈ N. (6.9)

Observe that (6.4), (6.7) and (6.8) imply

c
(r)

2j = c
(r−1)

j , j ∈ Z2r−1L, r ∈ N, (6.10)

i.e. the subdivision scheme (6.7), (6.8) is interpolatory, whereas (6.5) implies

∑

k∈Z2rL

φr
k

(
j

2

)
p(k) = p

(
j

2

)
, j ∈ Z2r+1L, p ∈ π2n−1, (6.11)

according to which the subdivision scheme (6.7), (6.8) has the (2n − 1)-th degree poly-

nomial filling property. In (6.7) – (6.11) we have obtained the analogues of (1.2), (1.4),

(1.5), (2.2) and (2.14), respectively.

To find a sequence {φr
j } satisfying (6.2) – (6.6), we observe from (2.31) and (2.63) that,

∑

j∈Z2rL

p(j)φ(x− j) =
∑

j

p(j)φ(x− j) = p(x), p ∈ π2n−1, x ∈ [2n− 2, 2rL− 2n+ 2].

(6.12)

Thus, the sequence {φ(· − j)} provides suitable refinable functions away from the bound-

aries, however closer to the boundaries of the interval some modifications are necessary.

These boundary modifications can again be based on property (2.63). Using arguments

similar to the ones which led to the construction of the mask (2.12), we define, for each

fixed r ∈ Z+, the sequence {φr
j } on the interval [0, 2rL] by

φr
j (x) =






φ(x − j) +

−1∑

k=−2n+2

`j−n+1(k− n+ 1)φ(x− k), j ∈ Z2n−1, (6.13a)

φ(x − j), j = 2n, . . . , 2rL− 2n, (6.13b)

φr
2rL−j(2

rL− x), j = 2rL− 2n+ 1, . . . , 2rL, (6.13c)
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6.1. Construction of a modified scheme

where the Lagrange fundamental polynomial polynomials {`k : k ∈ Jn} ⊂ π2n−1 are given

by (2.8). Examples of these modified functions are plotted in Figure 6.1.

0 1 2 3 4 5 6 7
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

φ
2
r φ

3
rφ

1
rφ

0
r

Figure 6.1: Illustration of definition (6.13) with n = 2.

Using

φ
(
n+ 1

2
+ k
)

= 0, k ∈ Z+, (6.14)

and

φ
(
−n − 1

2
− k
)

= 0, k ∈ Z+, (6.15)

which follow from (2.57) and (2.62) with m = 0, we prove the following useful properties

of the sequence {φ
(r)

j }.

Proposition 6.1 Suppose n ∈ N, r ∈ Z+, and L is an integer with L ≥ 4n − 2. Then

the sequence {φr
j }, as defined by (6.13), satisfies

φr
j (x) = φ(x− j), x ∈ [2n− 2, 2rL− 2n+ 2], j ∈ Z2rL, (6.16)

φr
j (x) = `j−n+1(x− n+ 1), x ∈ [0, 1], j ∈ Z2n−1, (6.17)

φr
j

(
k
2

)
=






`j−n+1

(
k
2

− n+ 1
)
, k ∈ Z2n−1,

φ
(

k
2

− j
)
, k = 2n − 2, . . . ,

j ∈ Z2n−1. (6.18)
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Chapter 6. Dubuc–Deslauriers subdivision for finite sequences

Proof. For j ∈ Z2rL−2n, (6.16) follows from the definition (6.13) and the finite support

property (2.31) of φ. It therefore suffices to prove (6.16) for j = 2rL − 2n + 1, . . . , 2rL.

But then, from (6.13c) and (6.13a),

φr
j (x) = φr

2rL−j(2
rL− x) = φ(−x + j) = φ(x− j),

by virtue of the symmetry property (2.64) of φ.

To prove (6.17), suppose x ∈ [0, 1] and j ∈ Z2n−1. Then (6.13a), (2.9) and (2.31) yield

φr
j (x) =

∑

k∈J2n−1

`j−n+1(k− n+ 1)φ(x− k)

=
∑

k

`j−n+1(k− n+ 1)φ(x− k) = `j−n+1(x− n + 1),

by virtue the fact that φ satisfies the polynomial reproduction property (2.63).

For the proof of (6.18), we first let k ∈ Z2n−1 and j ∈ Z2n−1. Then, using consecutively

(6.13a), (2.9), (6.15), (2.31) and (2.63), we get

φr
j

(
k
2

)
= φ

(
k
2

− j
)

+

−1∑

i=−2n+2

`j−n+1(i− n+ 1)φ
(

k
2

− i
)

(6.19)

=
∑

i∈J2n−1

`j−n+1(i− n + 1)φ
(

k
2

− i
)

=

3n−2∑

i=−2n+2

`j−n+1(i− n+ 1)φ
(

k
2

− i
)

=
∑

i

`j−n+1(i− n + 1)φ
(

k
2

− i
)

(6.20)

= `j−n+1

(
k
2

− n + 1
)
. (6.21)

Next, for k ≥ 2n and j ∈ Z2n−1, we see that (6.19) holds again, and the bottom part

of (6.18) therefore follows, since φ
(

k
2

− i
)

= 0, i = −2n + 2, . . . ,−1, by virtue of the

interpolatory property (2.32) and (6.14).

To complete the proof of (6.18), it remains to show that for j ∈ Z2n−1, we have

φ
(

k
2

− j
)

= `j−n+1

(
k
2

− n+ 1
)
, k ∈ {2n− 2, 2n− 1}. (6.22)

119



6.2. The refinability of the sequence {φr
j }

For k = 2n − 2, the property (6.22) is a consequence of (2.32) and (2.9), whereas for

k = 2n− 1 we use (2.56) and the middle line of (2.12) to deduce that

φ
(

k
2

− j
)

= d2n−1−2j = `j−n+1

(
1
2

)
= `j−n+1

(
k
2

− n+ 1
)
. �

We proceed to show in the following section that the sequence {φ
(r)

j } defined by (6.13) is

refinable.

6.2 The refinability of the sequence {φrj }

Analogous to the bi-infinite case, our proof in Section 6.3 below of the convergence of the

subdivision scheme will depend on the refinability of the sequence {φr
j }, as proved in this

section.

Theorem 6.2 The sequence {φr
j }, as defined in (6.13), satisfies the properties (6.2) –

(6.6).

Proof. The properties (6.2) – (6.4) are immediate consequences of the properties (2.32)

and (2.31) of φ.

To prove (6.5), we choose p ∈ π2n−1, and assume first that x ∈ [0, 2n− 2). Using (6.3),

(6.13a), (6.13b), the polynomial reproduction property (2.63), finite support (2.31) of φ,

and (2.10) consecutively, we get

∑

j∈Z2rL

p(j)φr
j(x) =

∑

j∈Z4n−4

p(j)φr
j(x)

=
∑

j∈Z4n−4

p(j)φ(x− j) +

−1∑

k=−2n+2


 ∑

j∈Z2n−1

p(j)`j−n+1(k − n+ 1)


φ(x − k)

=

4n−4∑

j=−2n+2

p(j)φ(x− j) =
∑

j

p(j)φ(x− j) = p(x).

For x ∈ [2n− 2, 2rL− 2n+ 2], the property (6.5) follows from (6.16) and (6.12). Similar

arguments establish polynomial reproduction for x ∈ (2rL− 2n+ 2, 2rL].
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Chapter 6. Dubuc–Deslauriers subdivision for finite sequences

To prove the refinability (6.6), assume first that j ∈ Z2n−1 and x ∈ [0, 2n − 2). Then,

(6.13a) and (2.9), imply

φr
j(x) =

∑

k∈J2n−1

`j−n+1(k− n+ 1)φ(x − k).

Now, use the refinement equation (2.61), together with (2.31), to obtain

φr
j (x) =

6n−6∑

i=−2n+2


 ∑

k∈J2n−1

`j−n+1(k− n+ 1)φ
(

i
2

− k
)

φ(2x − i). (6.23)

For the first part of the sum in (6.23) we get, from (2.31), (6.14), (6.15), the polynomial

reproduction (2.63), and definition (6.13a),

∑

i∈J2n−1


 ∑

k∈J2n−1

`j−n+1(k − n+ 1)φ
(

i
2

− k
)

φ(2x− i)

=
∑

i∈J2n−1

[
∑

k

`j−n+1(k− n+ 1)φ
(

i
2

− k
)
]
φ(2x − i)

=
∑

i∈J2n−1

`j−n+1

(
i
2

− n + 1
)
φ(2x − i)

=

−1∑

i=−2n+2

`j−n+1

(
i
2

− n+ 1
)
φ(2x − i) +

∑

i∈Z2n−1

`j−n+1

(
i
2

− n+ 1
)
φr+1

i (2x)

−

−1∑

k=−2n+2


 ∑

i∈Z2n−1

`j−n+1

(
i
2

− n+ 1
)
`i−n+1(k − n+ 1)


φ(2x − k)

=
∑

i∈Z2n−1

`j−n+1

(
i
2

− n + 1
)
φr+1

i (2x) =
∑

i∈Z2n−1

φr
j

(
i
2

)
φr+1

i (2x), (6.24)

having also used the polynomial reproduction (2.10), and (6.18).

For the remaining part of the sum in (6.23), we use the interpolatory properties (2.9) and

(2.32), as well as (6.14) and (6.18), to obtain

6n−6∑

i=2n


 ∑

k∈J2n−1

`j−n+1(k − n+ 1)φ
(

i
2

− k
)

φ(2x− i)

=

6n−6∑

i=2n

φ
(

i
2

− j
)
φ(2x− i)

=

6n−6∑

i=2n

φr
j

(
i
2

)
φr+1

i (2x) =

2r+1L∑

i=2n

φr
j

(
i
2

)
φr+1

i (2x), (6.25)
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j }

where we also used the definition (6.13b), and the inequality L ≥ 4n − 2. Combining

(6.23), (6.24) and (6.25) then yields the result (6.6) for j ∈ Z2n−1 and x ∈ [0, 2n− 2).

Next, for j ∈ Z2n−1 and x ∈ [2n− 2, 2n− 1+ j), we use Theorems 2.3, as well as (6.14),

(2.61), (6.18) and (6.14), to get

φr
j (x) = φ(x − j) =

∑

k

φ
(

k
2

− j
)
φ(2x− k)

=

4n−2+2j∑

k=2n−2

φ
(

k
2

− j
)
φ(2x − k)

=

4n−2+2j∑

k=2n−2

φr
j

(
k
2

)
φr+1

k (2x)

=
∑

k∈Z
2r+1L

φr
j

(
k
2

)
φr+1

k (2x),

since L ≥ 4n − 2, thereby establishing (6.6) for this subcase.

For j ∈ Z2n−1 and x ∈ [2n − 1 + j, 2rL], we deduce from (6.3), (6.18), (2.32) and (6.14)

that

∑

k∈Z
2r+1L

φr
j

(
k
2

)
φr+1

k (2x) =

4n−3+2j∑

k=2n+2j

φr
j

(
k
2

)
φr+1

k (2x)

=

4n−3+2j∑

k=2n+2j

φ
(

k
2

− j
)
φr+1

k (2x) = 0 = φr
j(x),

by virtue of the top part of (6.3). Hence, we have established (6.6) for all j ∈ Z2n−1.

Now consider the case j ∈ {2n, . . . , 2rL− 2n} and x ∈ (−2n + 1 + j, 2n− 1+ j). We use

definition (6.13b), (2.61), (2.31), as well as (6.14) and the finite support property (6.3),

to find that

φr
j(x) = φ(x − j) =

∑

k∈{2j+J2n−1}

φ
(

k
2

− j
)
φ(2x − k)

=
∑

k∈{2j+J2n−1}

φ
(

k
2

− j
)
φr+1

k (2x)

=
∑

k∈Z
2r+1L

φ
(

k
2

− j
)
φr+1

k (2x)

=
∑

k∈Z
2r+1L

φr
j

(
k
2

)
φr+1

k (2x),
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based on the inequalities −2n+ 1+ 2j ≥ 2n+ 1, and 2n− 1+ 2j ≤ 2r+1L− 2n− 1.

For j ∈ {2n, . . . , 2rL−2n} and x ∈ [0,−2n+1+ j], we use (6.3), (6.13b), (2.32) and (6.15)

to get

∑

k∈Z
2r+1L

φr
j

(
k
2

)
φr+1

k (2x) =
∑

k∈Z2j−2n

φ
(

k
2

− j
)
φr+1

k (2x) = 0 = φr
j(x).

Similarly, for j ∈ {2n, . . . , 2rL− 2n} and x ∈ [2n− 1+ j, 2rL], with (6.14), we have

∑

k∈Z
2r+1L

φr
j

(
k
2

)
φr+1

k (2x) =

2r+1L∑

k=2n+2j

φ
(

k
2

− j
)
φr+1

k (2x) = 0 = φr
j (x).

Hence (6.6) also holds for j ∈ {2n, . . . , 2rL− 2n}.

Finally, let j ∈ {2rL − 2n + 1, . . . , 2rL} and x ∈ [0, 2rL]. Then (6.13c), together with the

fact that (6.6) holds for j ∈ Z2n−1, gives

φr
j(x) = φr

2rL−j(2
rL− x)

=
∑

k∈Z
2r+1L

φr
2rL−j

(
k
2

)
φr+1

k

(
2r+1L− 2x

)

=
∑

k∈Z
2r+1L

φr
2rL−j

(
2rL− k

2

)
φr+1

2r+1L−k
(2r+1L− 2x)

=
∑

k∈Z
2r+1L

φr
j

(
k
2

)
φr+1

2r+1L−k
(2r+1L− 2x).

We claim that

φr+1
2r+1L−k

(2r+1L− 2x) = φr+1
k (2x), x ∈ [0, 2rL], k ∈ Z2r+1L, (6.26)

which, if true, completes the proof of the theorem. Definition (6.13c) implies that (6.26)

is true for k ∈ Z2n−1 ∪ {2rL− 2n+ 1, . . . , 2rL}, whereas, if k ∈ {2n, . . . , 2rL− 2n}, we find

that (6.13b) and (2.55) yield, for x ∈ [0, 2rL],

φr+1
2r+1L−k

(2r+1L−2x) = φ(k−2x) = φ(2x−k) = φr+1
k (2x). �

Remark: Observe from (6.16) and (6.13a), (6.13b), together with the support properties

(6.3) and (2.31), that

φr
j (x) = φ(x− j), x ∈ [2n− 2, 2rL], j ∈ Z2rL−2n. (6.27)
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6.3. Convergence of the modified subdivision scheme

6.3 Convergence of the modified subdivision scheme

We now prove the analogue of the results (2.27) and (2.28) Theorem 2.2 for finite subdi-

vision sequences.

Theorem 6.3 For each initial sequence c = {cj} ∈ M0 and with φj = φ0
j defined as in

(6.13), the subdivision scheme (6.7), (6.8) converges to the function

ΦL(x) =
∑

j∈ZL

cjφj(x), x ∈ [0, L], (6.28)

in the sense that

c
(r)

k = ΦL

(
k
2r

)
, k ∈ Z2rL, r ∈ Z+. (6.29)

Proof. Repeatedly using (6.6), (6.7), (6.8), and eventually (6.4), for k ∈ Z2rL and r ∈ Z+,

we obtain

ΦL

(
k
2r

)
=

∑

j∈ZL

cjφ
0
j

(
k
2r

)

=
∑

j∈ZL

cj

∑

i∈Z2L

φ0
j

(
i
2

)
φ1

i

(
k

2r−1

)

=
∑

i∈Z2L

c
(1)

i φ
1
i

(
k

2r−1

)

= · · ·

=
∑

i∈Z2rL

c
(r)

i φ
r
i(k) = c

(r)

k . �

Analogous to the subdivision scheme with mask (2.16), we proceed in the following section

to derive an explicit formulation of the boundary-adapted subdivision scheme (6.7), (6.8).

6.4 An explicit formulation

Let c ∈Mr. Then, from the subdivision operator definition (6.7), we obtain

(Src)2j+1 =
∑

k∈Z2rL

φr
k

(
j+ 1

2

)
ck, j ∈ Z2rL−1, (6.30)
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Chapter 6. Dubuc–Deslauriers subdivision for finite sequences

and thus, using also (6.13b), (6.15) and the top of (6.18), we get

(Src)2j+1 =
∑

k∈Z2n−1

`k−n+1

(
j+ 1

2
− n+ 1

)
ck, j ∈ Zn−1. (6.31)

Next, we claim that

(Src)2j+1 =
∑

k∈{j+Jn}

`k−j

(
1
2

)
ck, j = n, . . . , 2rL− 2n. (6.32)

Indeed, if j ∈ {n, . . . , 2n − 3}, then (6.30), (6.3), (6.18), (6.13b), (2.56) and the last line

of (2.12) yield

(Src)2j+1 =
∑

k∈Z4n−4

φ
(
j+ 1

2
− k
)
ck =

∑

k∈{j+Jn}

d2j+1−2kck,

and (6.32) then follows from the middle line of (2.12) for j ∈ {n, . . . , 2n− 3}. Similarly, if

j ∈ {2n− 2, . . . , 2rL− 2n}, we additionally use (6.16) to get

(Src)2j+1 =
∑

k∈Z2rL

φ
(
j + 1

2
− k
)
ck =

∑

k∈{−n+Jn}

d2j+1−2kck,

which, together with the middle line of (2.12), then proves (6.32) for j ∈ {2n−2, . . . , 2rL−

2n}.

For j ∈ {2rL− 2n+ 1, . . . , 2rL− 1}, we first note the symmetry

φr
k(x) = φr

2rL−k(2
rL− x), x ∈ [0, 2rL], k ∈ Z2rL, (6.33)

which follows from (6.13c), and the fact that, for k ∈ {2n, . . . , 2rL − 2n}, (6.13b) and

(2.64) give

φr
2rL−k(2

rL− x) = φ(k − x) = φ(x − k) = φr
k(x).

Thus, from (6.33),

φr
k

(
j + 1

2

)
= φr

2rL−k

(
(2rL− 1− j) + 1

2

)
, k ∈ Z2rL,

j = 2rL− 2n+ 1, . . . , 2rL− 1. (6.34)
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6.4. An explicit formulation

Combining (6.31), (6.32), (6.34), and using (6.10), we find that the subdivision scheme

(6.7), (6.8) has, for a given initial sequence c(0) = c ∈M0, the explicit formulation

c
(r+1)

2j = c
(r)

j , j ∈ Z2rL,

c
(r+1)

2j+1 =
∑

k∈Z2rL

a
(r)

j,kc
(r)

k , j ∈ Z2rL−1,






r ∈ Z+, (6.35)

where

a
(r)

j,k =






`k−n+1

(
j + 3

2
− n

)
, k ∈ Z2n−1,

0, k = 2n, . . . , 2rL,

j ∈ Zn−2, (if n ≥ 2), (6.36)

a
(r)

j,k =






`k−j

(
1
2

)
, k ∈ {j+ Jn},

0, k ∈ Z2rL \ {j+ Jn},

j = n − 1, . . . , 2rL− n, (6.37)

a
(r)

j,k = a
(r)

2rL−1−j,2rL−k, k ∈ Z2rL, j = 2rL− n+ 1, . . . , 2rL− 1. (6.38)

Explicit formulations of (6.36) and (6.37) are now obtained by using a calculation similar

to the one which yielded the middle line of (2.16). For k ∈ Z2n−1, and j ∈ Zn−2, we have

`k−n+1(j+
3
2

− n) =
(−1)j+k

24n−3

1

2j+ 1− 2k

(2j+ 1)!(4n− 3− 2j)!

(2n− 2− j)!(2n− 1− k)!j!k!
, (6.39)

whereas for k ∈ {j+ Jn}, and j = n − 1, . . . , 2rL− n,

`k−j(
1
2
) =

n

24n−3

(
2n− 1

n − 1

)
(−1)j+k

2j+ 1− 2k

(
2n− 1

n + j− k

)
. (6.40)

For example, if n = 2, (6.39) and (6.40) in (6.36) give

a
(r)

0,k =






5
16
, k = 0,

15
16
, k = 1,

− 5
16
, k = 2,

1
16
, k = 3,

0, k = 4, . . . , 2rL.

(6.41)
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Chapter 6. Dubuc–Deslauriers subdivision for finite sequences

In Figure 6.2, we have applied the modified subdivision scheme (6.35), with mask based

on (6.41) and (2.18) to a specific choice of finite (non-periodic) initial sequence c. Note

how there are no edge effects at the boundaries of the initial sequence.

(a) c(0) (∗) and c(1) (◦) (b) c(1) (∗) and c(2) (◦) (c) c(0) (∗) and c(6) (−) (d) limit curve

Figure 6.2: The adapted Dubuc–Deslauriers subdivision scheme (6.35) with mask (6.41)
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Interpolation wavelets on an

interval

Following Section 4 of [21], we show here how the refinable sequence {φr
j } of Section 6.2

can be used to explicitly construct interpolation wavelets on an interval. Our definition

in (7.10) below coincides, in the inner region bounded away from the endpoints, with the

definition of interpolation wavelets on R as given in e.g.[12, equation (1.11)], [47, p 300]

and [63, p 193].

7.1 Background

Alternative approaches to the construction of wavelets on an interval include work by

Daubechies [17, Section 10.7] and Cohen, Daubechies and Vial [14], in which periodization

and related methods are used for the construction of orthonormal wavelet bases on an

interval. In the spline setting, explicit constructions of symmetric biorthogonal spline

wavelets on an interval, as well as the corresponding decomposition and reconstruction

algorithms, appear in Chui and Quak [13], Quak and Weyrich [59], Chui and de Villiers

[11] and Chui [9, Section 7.3.2].

The connection between the compactly supported orthonormal wavelets of Daubechies

[16, 17] and Dubuc–Deslauriers subdivision has been noted by several authors (see e.g. [51,

Section 3]), and exploited for the construction of biorthogonal interpolatory wavelets by

Beylkin and Saito [4], and Bertoluzza and Naldi [2, 3]. A further study of the relationship

between interpolation processes and wavelets construction appears in the paper by Lee,

Sharma and Tan [46].
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7.1. Background

The idea, as used in this chapter, to construct interpolation wavelets by means of a non-

orthogonal linear space decomposition and an interpolation operator, has been studied

for wavelets on R by Chui and Li [12], and used by Sweldens, to construct lifting schemes

in [63].

Our interpolation wavelet decomposition and reconstruction algorithms for finite data

sets, as given by (7.32), (7.33) below and (6.36) – (6.40) in Chapter 6, are identical to

those derived by Aràndiga, Donat and Harten [1, equations (55) and (56)]. Making use

of ideas developed by Harten [39, 40], these authors derive their equations from a general

framework—our approach has the advantage that it allows an explicit construction of the

underlying refinable sequence {φr
j } as demonstrated by our equation (6.13) in the previous

chapter. This is perhaps closer to the unpublished work of Donoho [29], in the sense that

both are based on polynomial extrapolation. An essential difference however, lies in

the way in which the associated nested sequence of linear spaces {Vr} is defined. While

Donoho’s construction is consistently based on a polynomial extrapolation operator, we

define the linear space Vr as the span of the sequence {φr
j }. The nesting property of the

{Vr} then follows from the refinability of {φr
j }, as proved in Section 7.2 below.

Note that the wavelets constructed in this manner do not have vanishing moments—

the mean of our wavelet is not zero. In this regard our wavelets are similar to those

mentioned by Mallat [47, p 301]. We show however that the corresponding interpolation

wavelet space can be characterized in terms of a projection operator which is exact on

polynomials, therefore the interpolation wavelet coefficients of a function are relatively

small in those regions where the function exhibits local polynomial-like behavior. For

the construction of (non-orthogonal) interpolation wavelets on the interval with vanishing

moments, we refer to Donoho [30].

Finally, Schröder and Sweldens [62] develop algorithms implementing interpolation wavelets

on an interval without providing detailed proofs.
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Chapter 7. Interpolation wavelets on an interval

7.2 Decomposition based on interpolation

The main result of this chapter is the direct sum (non-orthogonal) space decomposition

of Theorem 7.1 below, by virtue of which we obtain compactly supported symmetric

interpolation wavelets.

Let n ∈ N and L ≥ 4n − 2 be as in Chapter 6, and let R be a given positive integer. We

define the linear space sequence {Vr : r ∈ ZR} by

Vr = span{φr
j(2

r−R·) : j ∈ Z2rL}, r ∈ ZR, (7.1)

and the linear operator sequence {Pr : r ∈ ZR} for Pr : C[0, 2RL] → Vr, by

(Prf)(x) =
∑

j∈Z2rL

f(2R−rj)φr
j (2

r−Rx), x ∈ [0, 2RL], r ∈ ZR, (7.2)

with φ = φD
n denoting, as in Chapter 6, the Dubuc–Deslauriers interpolatory refinable

function of Theorem 2.3. It follows from (6.4) that Pr is an interpolation operator, which

means that, for each f ∈ C[0, 2RL],

(Prf)(2
R−rj) = f(2R−rj), j ∈ Z2rL, r ∈ ZR. (7.3)

Also, a proof based on (6.4) shows that Pr is a projection on Vr. Thus,

Prf = f, f ∈ Vr, r ∈ ZR. (7.4)

Furthermore, (6.5) gives

∑

j∈Z2rL

p(2R−rj)φr
j(2

r−Rx) = p(x), x ∈ [0, 2rL], p ∈ π2n−1, r ∈ ZR, (7.5)

by virtue of which

π2n−1 ⊂ Vr, r ∈ ZR, (7.6)

where here π2n−1 is restricted to the interval [0, 2rL].

Since (6.6) yields the refinement equation,

φr
j (2

r−Rx) =
∑

k∈Z
2r+1L

φr
j

(
k

2

)
φr+1

k (2r+1−R x), x ∈ [0, 2rL], j ∈ Z2rL, r ∈ ZR−1, (7.7)
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7.2. Decomposition based on interpolation

we have the nesting property

Vr ⊂ Vr+1, r ∈ ZR−1. (7.8)

Based on (6.4) one can prove that, for each fixed r, the set {φr
j (2

r−R·) : j ∈ Z2rL} is linearly

independent on [0, 2rL], and thus, from (7.1), we have

dimVr = 2rL+ 1, r ∈ ZR. (7.9)

Now define the sequence {ψr
j } = {ψr

j : j ∈ Z2rL−1, r ∈ ZR−1} by

ψr
j (x) = φr+1

2j+1(x), x ∈ [0, 2rL], j ∈ Z2rL−1, r ∈ ZR−1, (7.10)

with corresponding linear spaces

Wr = span{ψr
j(2

r+1−R·) : j ∈ Z2rL−1}, r ∈ ZR−1. (7.11)

From (7.10) and (7.1) follows that

Wr ⊂ Vr+1, r ∈ ZR−1. (7.12)

If U, V and W are linear spaces, we use the direct sum notation U = V ⊕W to denote

that fact that, for each f ∈ U, there exist g ∈ V and h ∈ W such that f = g + h, and

with g and h uniquely determined by f.

The following direct sum decomposition result holds.

Theorem 7.1

Vr+1 = Vr ⊕Wr, r ∈ ZR−1, (7.13)

with Vr and Wr defined by (7.1) and (7.11).

To prove Theorem 7.1, we first introduce the linear spaces Ur and Xr, where

Ur = {f− Prf : f ∈ Vr+1}, r ∈ ZR−1, (7.14)
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Chapter 7. Interpolation wavelets on an interval

with Pr defined by (7.2), and

Xr = {f ∈ Vr+1 : f(2R−rj) = 0, j ∈ Z2rL}, r ∈ ZR−1, (7.15)

in terms of which the following preliminary result holds.

Proposition 7.2 The linear spaces Vr,Wr, Ur and Xr, as defined by (7.1), (7.11), (7.14)

and (7.15), satisfy

(a) Wr = Ur = Xr, r ∈ ZR−1; (7.16)

(b) Vr ∩Wr = {0}, r ∈ ZR−1. (7.17)

Proof. (a) First, we show that Ur = Xr. If g ∈ Ur, then (7.2) and (7.3) yield g(2R−rj) =

0, j ∈ Z2rL, i.e.g ∈ Xr, so that Ur ⊂ Xr. If g ∈ Xr, then (7.2) and (7.15) imply Prg = 0;

hence, g = f − Prf with f = g, and thus, since also f ∈ Xr ⊂ Vr+1 from (7.15), we have

from (7.14) that g ∈ Ur. Consequently, Xr ⊂ Ur.

Next, we prove thatWr ⊂ Xr. If g ∈Wr, there exists a coefficient sequence {c0, . . . , c2rL−1}

such that g(x) =
∑

k∈Z2rL−1

ckψ
r
k(2

r+1−Rx), x ∈ [0, 2rL]. But then, from (7.10), we have

g(2R−rj) =
∑

k∈Z2rL−1

ckφ
r+1
2k+1(2j) = 0, j ∈ Z2rL,

by virtue of (6.4). Definition (7.15) then implies that g ∈ Xr. So, Wr ⊂ Xr.

We now show that Ur ⊂ Wr, thereby completing the proof of (7.16). Suppose therefore

g ∈ Ur, so that, from (7.14) and (7.1), there exists a coefficient sequence {cj : j ∈ Z2r+1L}

such that the function f ∈ Vr+1 given by

f(x) =
∑

j∈Z
2r+1L

cjφ
r+1
j (2r+1−Rx), x ∈ [0, 2RL], (7.18)

satisfies the equation

g(x) = f(x) − (Prf)(x), x ∈ [0, 2RL]. (7.19)
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7.2. Decomposition based on interpolation

But, from (7.2), (7.18), (6.4) and (6.6), we obtain

(Prf)(x) =
∑

j∈Z
2r+1L


 ∑

k∈Z2rL

φr+1
j (2k)φr

k(2
r−Rx)


 cj

=
∑

j∈Z2rL

c2jφ
r
j (2

r−Rx)

=
∑

j∈Z2rL

c2j

∑

k∈Z
2r+1L

φr
j

(
k
2

)
φr+1

k (2r+1−Rx)

=
∑

j∈Z2rL

c2jφ
r+1
2j (2r+1−Rx)

+
∑

j∈Z2rL

c2j

∑

k∈Z2rL−1

φr
j

(
k + 1

2

)
φr+1

2k+1(2
r+1−Rx). (7.20)

Also, from (7.18),

f(x) =
∑

j∈Z2rL

c2jφ
r+1
2j (2r+1−Rx) +

∑

j∈Z2rL−1

c2j+1φ
r+1
2j+1(2

r+1−Rx). (7.21)

Combining (7.19), (7.20) and (7.21) yields

g(x) =
∑

j∈Z2rL−1


c2j+1 −

∑

k∈Z2rL

c2kφ
r
k

(
j+ 1

2

)

φr+1

2j+1(2
r+1−Rx), (7.22)

which, together with (7.11), (7.10), implies that g ∈Wr. Thus Ur ⊂Wr.

(b) Suppose f ∈ Vr ∩Wr. Then (7.4) and (7.2) imply that, for x ∈ [0, 2rL],

f(x) = (Prf)(x) =
∑

j∈Z2rL

f(2R−rj)φr
j(2

r−Rx) = 0,

after noting from (7.16) that f ∈ Xr, and then using the definition (7.15). �

We can now prove Theorem 7.1.

Proof. Let r ∈ ZR−1 be fixed. Take any f ∈ Vr+1 and define g = Prf and h = f − Prf.

Then (7.2) implies that g ∈ Vr, whereas (7.14) and (7.16) imply that h ∈ Wr. We have

therefore shown that there exist functions g ∈ Vr and h ∈ Wr such that f = g + h. It

remains to be proved that g and h are uniquely determined by f. But, if g0 ∈ Vr and

h0 ∈ Wr are such that f = g0 + h0, then u = g0 − g ∈ Vr and v = h − h0 ∈ Wr, with
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Chapter 7. Interpolation wavelets on an interval

u = v. Thus u ∈ Vr ∩Wr and v ∈ Vr ∩Wr, and the desired uniqueness result follows

from (7.17). �

From (7.13) one concludes that dim Wr = dim Vr+1 − dim Vr, so that (7.9) leads to

dim Wr = 2rL, r ∈ ZR−1. (7.23)

Hence, based on the definition (7.11), we conclude that the set {ψr
j(2

r+1−R·) : j ∈ Z2rL−1}

is linearly independent on [0, 2RL], and therefore is a basis for Wr.

We have therefore established, for each fixed r ∈ ZR−1, an interpolation wavelet basis

{ψr
j(2

r+1−R·) : j ∈ Z2rL−1} for the interpolation wavelet space Wr. The elements of

the sequence {ψr
j } are called interpolation wavelets. Examples for n = 2 are plotted

in Figure 7.1.

0 0.5 1 1.5 2 2.5 3 3.5
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

ψ
1
rψ

0
r

Figure 7.1: Boundary interpolation wavelets with n = 2.

In the next section, we derive the corresponding wavelet decomposition and reconstruction

algorithms.

7.3 Decomposition and reconstruction algorithms

The symmetric interpolation wavelets of the previous section lead to finite decomposi-

tion and reconstruction formulas with rational coefficients given by the values of certain

Lagrange polynomials at half integers, as described in the section below. We then com-

ment on a connection between interpolation wavelet decomposition on an interval and
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7.3. Decomposition and reconstruction algorithms

the adapted subdivision of Chapter 6 and also on a property analogous to the vanishing

moments property usually associated with wavelets.

To obtain the decomposition algorithm, let r ∈ ZR−1 be fixed, and suppose fr+1 ∈ Vr+1 is

given by

fr+1(x) =

2r+1L∑

j=0

c
(r+1)

j φr+1
j (2r+1−Rx), x ∈ [0, 2RL]. (7.24)

According to Theorem 7.1, and for the bases {φr
j } and {ψr

j } of Vr and Wr, we know that

there exist unique coefficient sequences {c
(r)

j : j ∈ Z2rL} and {d
(r)

j : j ∈ Z2rL−1} such that

the functions fr ∈ Vr and gr ∈Wr defined by

fr(x) =
∑

j∈Z2rL

c
(r)

j φ
r
j(2

r−Rx), x ∈ [0, 2RL], (7.25)

and

gr(x) =
∑

j∈Z2rL−1

d
(r)

j ψ
r
j (2

r+1−Rx), x ∈ [0, 2RL], (7.26)

satisfy

fr+1 = fr + gr. (7.27)

In particular, observe that we then have the interpolation wavelet decomposition

fr = f0 +
∑

j∈ZR−1

gj.

Moreover,

fr = Prfr+1 (7.28)

and

gr = fr+1 − Prfr+1. (7.29)

The coefficients {d
(r)

j } in (7.26) are called the interpolation wavelet coefficients.

Using (7.24), (7.10) and (7.29), and the argument which led to (7.22), we obtain, for all

x ∈ [0, 2RL],

∑

j∈Z2rL−1

d
(r)

j ψ
r
j(2

r+1−Rx) =
∑

j∈Z2rL−1


c(r+1)

2j+1 −
∑

k∈Z2rL

c
(r+1)

2k φr
k

(
j+ 1

2

)

ψr

j(2
r+1−Rx).
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Since {ψr
j(2

r+1−R·) : j ∈ Z2rL−1} is a linearly independent set on [0, 2RL], we have

d
(r)

j = c
(r+1)

2j+1 −
∑

k∈Z2rL

c
(r+1)

2k φr
k

(
j+ 1

2

)
, j ∈ Z2rL−1. (7.30)

Next, using (7.25), (7.28), (7.2) and (6.4) we get, for all x ∈ [0, 2RL],

∑

j∈Z2rL

c
(r)

j φ
r
j(2

r−Rx) = fr(x) = (Prfr+1)(x)

=
∑

j∈Z2rL


 ∑

k∈Z
2r+1L

c
(r+1)

k φr+1
k (2j)


φr

j (2
r−Rx)

=
∑

j∈Z2rL

c
(r+1)

2j φr
j (2

r−Rx).

Since the set {φr
j (2

r−R·) : j ∈ Z2rL} is linearly independent on [0, 2RL], we deduce that

c
(r)

j = c
(r+1)

2j , j ∈ Z2rL. (7.31)

Now observe from (6.30), (6.8) and (6.35) that

φr
k(j+

1
2
) = a

(r)

j,k, k ∈ Z2rL, j ∈ Z2rL−1,

which, together with (7.30) and (7.31), then yield, for a given data sequence {c
(R)

j : j ∈

Z2RL}, the following interpolation wavelet algorithms:

Decomposition algorithm:

c
(r)

j = c
(r+1)

2j , j ∈ Z2rL,

d
(r)

j = c
(r+1)

2j+1 −
∑

k∈Z2rL

a
(r)

j,kc
(r+1)

2k , j ∈ Z2rL−1,






r = R− 1, R− 2, . . . , 0. (7.32)

Reconstruction algorithm:

c
(r+1)

2j = c
(r)

j , j ∈ Z2rL,

c
(r+1)

2j+1 = d
(r)

j +
∑

k∈Z2rL

a
(r)

j,kc
(r)

k , j ∈ Z2rL−1,





r = 0, 1, . . . , R− 1. (7.33)

Here the coefficient sequence {a
(r)

j,k : k ∈ Z2rL, j ∈ Z2rL−1, r ∈ ZR−1} is defined by (6.36),

(6.37), (6.38), with explicit formulations in (6.39) and (6.40).
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7.3. Decomposition and reconstruction algorithms

Suppose f ∈ C[0, 2RL], with the integers R and L suitably chosen. The sequence {fr :

r = R − 1, R − 2, . . . , 0} is then defined by (7.28), with fR = f, whereas the sequence

{gr : r = R − 1, R − 2, . . . , 0} is defined by (7.29). The coefficient sequences {c
(r)

j : j ∈

Z2rL, r = R, R − 1, . . . , 0} and {d
(r)

j : j ∈ Z2rL−1, r = R − 1, R − 2, . . . , 0} are computed

recursively by means of (7.32). In particular, observe that since (7.2) and (7.25) yield

∑

j∈Z
2RL

c
(R)

j φR
j (x) = fR(x) = (PRf)(x) =

∑

j∈Z
2RL

f(j)φR
j (x),

we have c
(R)

j = f(j), j ∈ Z2RL, and thus, the interpolation wavelet decomposition algorithm

(7.32) can, in this context, be rewritten as

c
(r)

j = f(2R−rj), j ∈ Z2rL,

d
(r)

j = f(2R−r−1(2j+ 1)) −
∑

k∈Z2rL

a
(r)

j,kf(2
R−rk), j =∈ Z2rL−1.






r = R− 1, R− 2, . . . , 0. (7.34)

The reconstruction is then performed by means of (7.33).

At this stage, it is of interest to point out the following relationship between the interpo-

lation wavelet procedure (7.34), (7.33) and the interpolatory subdivision scheme (6.35).

After the decomposition with (7.34) has been performed, suppose that we set the inter-

polation wavelet coefficients

d
(r)

j = 0, j ∈ Z2rL−1, r ∈ ZR−1, (7.35)

at each successive step of the reconstruction phase (7.33). The final reconstructed (and

smoothed) function is then

fR(x) =
∑

j∈Z
2RL

c
(R)

j φR
j (x), x ∈ [0, 2RL], (7.36)

with, as is clear from the top parts of (7.33) and (7.34), and (6.4),

fR(2Rk) = c
(R)

2Rk
= f(2Rk), k ∈ ZL.
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Now observe that the zero values (7.35) substituted into the bottom part of (7.33) yield

precisely the bottom part of the subdivision formula (6.35).

Hence the interpolation wavelet decomposition and reconstruction scheme described above

is equivalent to the following interpolatory subdivision scheme:

Choose c = c(0) = f(2Rk), k ∈ Z+, and apply the interpolatory subdivision scheme

(6.35). According to Theorem 3.3, this scheme converges to the limit curve

g(x) =
∑

j∈ZL

f(2Rj)φ0
j (x), x ∈ [0, L]. (7.37)

Then, using the refinement equation (6.6), as well as (6.7) – (6.8), we get

g(x) =
∑

j∈ZL

c
(0)

j φ
0
j (x)

=
∑

j∈ZL

c
(0)

j

∑

k∈Z2L

φ0
j

(
k

2

)
φ1

k(2x)

=
∑

k∈Z2L

c
(1)

k φ
1
k(2x) = · · · =

∑

k∈Z
2RL

c
(R)

k φR
k(2Rx) = fR(2Rx),

from (7.36). Hence,

g(x) = fR(2Rx), x ∈ [0, L]. (7.38)

The subdivision approach therefore has the significant advantage of providing an efficient

iterative procedure for the construction of the function fR in (7.36).

Finally, suppose in the decomposition procedure defined by the algorithm (7.34) we have,

for some given polynomial p ∈ π2n−1, and for a fixed r ∈ {R− 1, R− 2, . . . , 0}, that there

exists an integer µ ∈ [0, 2rL] such that

f(x) = p(x), x ∈ [α, β],

where

α = max{0, 2R−r(µ− 2n+ 2)}, β = min{2rL, 2R−r(µ+ 2n− 2)}.
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7.3. Decomposition and reconstruction algorithms

Then, using also (7.34), (7.30), (6.3) and (6.5), we find

d(r)
µ = p(2R−r−1(2µ+ 1)) −

k=min{2rL,µ+2n−2}∑

k=max{0,µ−2n+2}

p(2R−rk)φr
k

(
µ+ 1

2

)

= p(2R−r−1(2µ+ 1)) −
∑

k∈Z2rL

p(2R−rk)φr
k

(
µ+ 1

2

)
= 0.

Hence the interpolation wavelet coefficients d
(r)

j of the function f, with local polynomial-

like behaviour, can be expected to be small in comparison to the interpolation wavelet co-

efficients d
(r)

j corresponding to those regions where the function f exhibits non-polynomial-

like behaviour.

For example, choose the function f in (7.34) as the cubic cardinal B-spline N4, with

an arbitrary choice of the integers R and L. As follows from (1.14) and (1.10), the B-

spline N4 consists of four cubic polynomial pieces joined together in such a way that the

second derivative of the B-spline N4 is continuous, while the third derivative has jump

discontinuities at the integers Z4. Now choose n = 2 to ensure, by the above argument,

that the wavelet coefficients d
(r)

j , r = R − 1, R − 2, ..., 0 are zero in the regions where f

is identical to a polynomial and non-zero in the regions where the third derivative has a

jump discontinuity.

0 50 100 150 200 250 300
0

0.1

0.2

0.3

0.4
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0.6

0.7

c
j
(3)

Figure 7.2: Cubic cardinal B-spline N4, sampled at 257 equally spaced points.

In Figure 7.2, we have chosen R = 3 and L = 32 and plotted the sequence of sampled

values c
(3)

j = f(j) versus their indices. Figure 7.3 shows the result of the interpolation

wavelet decomposition algorithm (7.34), where the resulting coefficients are also plotted

versus their indices.
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(a) Average component.
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(b) Detail components.

Figure 7.3: Third level decomposition of the cubic cardinal B-spline N4 of Figure 7.2.

We observe that the average values c
(0)

j , as shown in Figure 7.3(a), consist of precisely

every eighth value of the original B-spline. What is of more interest is the set of detail

components shown in Figure 7.3(b). Note that, as expected, the interpolation wavelet co-

efficients d
(r)

j , r = 2, 1, 0, are non-zero only where the B-spline N4 has jump discontinuities

in its third derivative.

7.4 Examples

In this section we illustrate the interpolation wavelets by applying them to two practical

problems. Of course we do not claim that the schemes described above are more efficient in

practice than any of the alternatives. This would require a detailed study which we leave

for future consideration. These examples merely serve to illustrate the theory developed

above. Note in particular how the interpolation wavelet decomposition on an interval

avoids any edge artifacts.

7.4.1 Signature smoothing

Figure 7.4(a) shows part of a signature that was captured by a digitized tablet. One

clearly sees the quantization effect of the underlying grid of this particular tablet. Almost

all applications require that the signature should be smoothed. We therefore applied a

single level of the interpolation wavelet decomposition (7.34) with n = 2. All the detail
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coefficients were set equal to zero, and a single reconstruction step was performed using

the zero detail coefficients. The result is the smoothed signature in Figure 7.4(b). Note

that we follow standard practice by displaying only the discrete coefficients c
(R)

j , connected

by straight line segments. This is different from the smooth curve given by (7.36).
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(a) Original signature sample.
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300
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(b) Smoothed signature.

Figure 7.4: Illustration of smoothing with interpolation wavelet decomposition.

A closer look at the original and reconstructed signature is given in Figure 7.5. Note

from Figure 7.5(a) how every other data point stays the same (due to the interpolation

property). The remaining points however, are calculated in such a way that the result is

a smoother signature. In fact, this procedure is exactly the same as if we discarded every

other data point of the original signature and then applied one step of the subdivision

scheme with n = 2 to the result, as described in Chapter 6. As mentioned above we plot

only the data points connected by straight lines, and not the smooth curve fR described

by (7.36). An efficient way of calculating fR is by subdivision: according to the argument

leading from (7.36) to (7.38), each step of the subdivision scheme doubles the number of

points on the curve fR. The result of two more subdivision steps is shown in Figure 7.5(b).

Note how the reconstructed curve has become noticeably smoother.

Note that the main problem in this case is that the data points themselves are corrupted

by noise. Insisting that the data points are interpolated is therefore not the best way to

proceed. In this case non-interpolatory schemes such as Lane–Riesenfeld [45] (see also [50,

Chapter 2]) might prove beneficial. Even in this less than ideal situation, the interpolation

wavelets provide a surprisingly good smoothing, with no artificial edge effects.
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(a) A single reconstruction step
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(b) After two more subdivision steps.

Figure 7.5: Magnification of original and smoothed signature.

7.4.2 Two-dimensional interpolation wavelet decomposition

For our second example we use the well-known painting by Salvador Dali, Gala contem-

plating the Mediterranean, Figure 7.6(a), the original of which can be seen in the Dali

museum in Figueras, Spain. Although already painted in 1976, it is a beautiful illustra-

tion of Dali’s awareness of images on different scales, in this case, a portrait of Abraham

Lincoln, the 16th President of the United States of America, and Gala, Dali’s wife, looking

out to sea.

(a) Original image. (b) Decomposition of image.

Figure 7.6: Illustration of two-dimensional interpolation wavelet decomposition.

Constructing a two-dimensional tensor product from the interpolation wavelet (7.10) (see

e.g. [9, Section 6.4]), allows us to perform a two-dimensional decomposition of Dali’s
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painting, as illustrated in Figure 7.6(b), effectively separating the high frequency compo-

nents (detail) and the low frequency components (average). (With the original painting,

the same effect is obtained by viewing it from a distance, again effectively removing the

detail components—obviously what Dali had in mind.) Note how clearly the image of

Abraham Lincoln is captured by the average component, displayed in the top left-hand

corner of Figure 7.6(b). The remaining part of the figure consists of the various detail

components.

(a) Detail removed. (b) Average removed.

Figure 7.7: Reconstructed images.

Now we set the detail components equal to zero, and then reconstruct according to a

two-dimensional reconstruction algorithm also based on the tensor product interpolation

wavelet. The result, as shown in Figure 7.7(a), is the image of Abraham Lincoln interpo-

lated back onto the original grid of Figure 7.6(a). If we set the average component equal

to zero, and then reconstruct, we obtain the image in Figure 7.7(b), which contains all

the areas of sharp transition which are absent from Figure 7.7(a).
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