Laser-driven radiation sources in the ALPHA-X project

dc.contributor.authorWiggins S.M.
dc.contributor.authorGallacher J.G.
dc.contributor.authorSchlenvoigt H.-P.
dc.contributor.authorSchwoerer H.
dc.contributor.authorWelsh G.H.
dc.contributor.authorIssac R.C.
dc.contributor.authorBrunetti E.
dc.contributor.authorVieux G.
dc.contributor.authorShanks R.P.
dc.contributor.authorCipiccia S.
dc.contributor.authorAnania M.P.
dc.contributor.authorManahan G.G.
dc.contributor.authorAniculaesei C.
dc.contributor.authorSubiel A.
dc.contributor.authorGrant D.W.
dc.contributor.authorReitsma A.J.W.
dc.contributor.authorErsfeld B.
dc.contributor.authorIslam M.R.
dc.contributor.authorJaroszynski D.A.
dc.identifier.citationProceedings of SPIE - The International Society for Optical Engineering
dc.description.abstractThe Advanced Laser-Plasma High-Energy Accelerators towards X-rays (ALPHA-X) programme is developing laserplasma accelerators for the production of ultra-short electron bunches with subsequent generation of high brilliance, short-wavelength radiation pulses. Ti:sapphire laser systems with peak power in the range 20-200 TW are coupled into mm- and cm-scale plasma channels in order to generate electron beams of energy 50-800 MeV. Ultra-short radiation pulses generated in these compact sources will be of tremendous benefit for time-resolved studies in a wide range of applications across many branches of science. Primary mechanisms of radiation production are (i) betatron radiation due to transverse oscillations of the highly relativistic electrons in the plasma wakefield, (ii) gamma ray bremsstrahlung radiation produced from the electron beams impacting on metal targets and (iii) undulator radiation arising from transport of the electron beam through a planar undulator. In the latter, free-electron laser action will be observed if the electron beam quality is sufficiently high leading to stimulated emission and a significant increase in the photon yield. All these varied source types are characterised by their high brilliance arising from the inherently short duration (~1-10 fs) of the driving electron bunch. © 2011 SPIE.
dc.subjectLaser-Plasma interaction
dc.subjectRadiation sources
dc.subjectRelativistic electron beams
dc.subjectWakefield acceleration
dc.subjectBremsstrahlung radiation
dc.subjectCompact sources
dc.subjectElectron bunch
dc.subjectHigh-energy accelerator
dc.subjectLaser plasma
dc.subjectLaser-plasma accelerator
dc.subjectLaser-plasma interactions
dc.subjectMetal target
dc.subjectPeak power
dc.subjectPhoton yield
dc.subjectPlasma channel
dc.subjectPlasma wakefield
dc.subjectPrimary mechanism
dc.subjectRadiation pulse
dc.subjectRadiation source
dc.subjectRadiation sources
dc.subjectRelativistic electron
dc.subjectRelativistic electron beam
dc.subjectShort durations
dc.subjectSource types
dc.subjectTi:sapphire laser systems
dc.subjectTime resolved studies
dc.subjectTransverse oscillation
dc.subjectUndulator radiation
dc.subjectWakefield acceleration
dc.subjectBeam plasma interactions
dc.subjectElectron beams
dc.subjectElectron optics
dc.subjectFree electron lasers
dc.subjectGamma rays
dc.subjectLaser produced plasmas
dc.subjectParticle beam bunching
dc.subjectPlasma waves
dc.subjectQuantum optics
dc.subjectRadioactivity measurement
dc.subjectTerahertz waves
dc.subjectX rays
dc.titleLaser-driven radiation sources in the ALPHA-X project
dc.typeConference Paper
dc.description.versionConference Paper

Files in this item


There are no files associated with this item.

This item appears in the following Collection(s)