Research and development to produce a first generation running power measurement device
Date
2024-03
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Stellenbosch : Stellenbosch University
Abstract
ENGLISH ABSTRACT: This research contributes to the engineering and the understanding of power kinetic power measurements while walking or running based on each stride. This research explores ways of applying power measurements through a low-power embedded apparatus placed on the foot. In doing so, the study identifies current marketplace models (not necessarily footbased), refines the measurement of external factors such as spatio-temporal parameters, and identifies the overall accuracy of these models. The methodology, through comprehensive research, proposes an algorithm for implementing a net mass/energy balance equation. This algorithm, applied in its simplest form necessitated the need for a speed (velocity) measurement and subsequently also identified the need for gait measurements, velocity estimation, position estimation and free space orientation measurements. This thesis outlines the measurement and analyses of several spatio-temporal parameters using an embedded foot device. Once applied the parameters are analysed and used to calculate the simplistic kinetic output. The hardware design primarily focuses on the measurement of acceleration, angular acceleration, and magnetic flux, which are essential components of an Inertial Measurement Unit (IMU) device. This is achieved with a simple Microcontroller unit (MCU) accompanied by the integration of data storage with flash memory or a ”Google Sheet” platform. Furthermore, data transmission is processed with a Bluetooth Low Energy (BLE) device. The parameters are then analysed on the device itself, where the orientation is calculated using a quaternion-based implementation. Additionally, filtered acceleration is measured and calculated in gravity free space, ensuring accurate velocity calculations that are free of drift due to the Zero Velocity Update (ZVU) algorithm implementation. Following velocity calculation, position estimation is calculated in conjunction with the gait measurement, enabling the measurement of speed and distance travelled, thus allowing the analysis of a kinetic power measurement using basic motion. Applying the quaternion-based orientation calculation yielded high accuracy, enabling the correct measurement of subsequent parameters, such as the filtered acceleration and velocity. In contrast, gait measurement encountered challenges. Despite its accuracy, it had difficulty capturing data within the data storage segment, leading to various issues. With data and storage segmentation, the gait calculation has improved accuracy with the ability to measure each step. Furthermore, velocity and position estimation were drift free and within 10% accurate compared to the testing methods. Finally, utilising the combined measurements, a speed calculation (distance travelled over stride time) was used, showing promise for achieving a reliable kinetic power result. This analysis indicates that the foot device is capable of generating a relative power measurement on an embedded foot device, provided that it is not obstructed by storage segmentation. The research also revealed that the accuracy of the Stryd pod was not accurate when implemented for walking, which would be similar for other market marketplace models. The foot device highlights the inconsistency with the theoretical kinetic power method across different devices. Nevertheless, the spatio-temporal measurements are more consistent, and with further research, development and testing within the individual sections an open source standardised method can be produced.
AFRIKAANSE OPSOMMING: Uit die oogpunt van ‘n ingenieur dra hierdie navorsing by tot beter begrippe van kinetiese kragmeting tydens stap of hardloop met elke tree wat gegee word. Hierdie navorsing verken maniere om kragmetings toe te pas via ’n lae krag ingebedde apparaat (vasgemaak aan die voet). In die proses identifiseer die studie huidige markplekmodelle (nie noodwendig voetgebaseer nie), verfyn die meting van eksterne faktore soos tydruimtelike parameters, en identifiseer die algehele akkuraatheid van hierdie modelle. Deur omvattende navorsing, word ’n algoritme voorgestel vir die implementering van ’n netto massa/energiebalans-vergelyking. Hierdie algoritme, wat in sy eenvoudigste vorm toegepas is, het die behoefte aan spoed- (snelheid-)meting genoodsaak en het daarna ook die behoefte aan metings van gang, snelheid, posisie en ori¨entasie in vrye ruimte identifiseer. Hierdie tesis gee ’n uiteensetting van die meting en ontleding van verskeie ruimteliketemporale parameters deur gebruik te maak van n ingebedde voettoestel. Sodra dit toegepas is, word die parameters ontleed en gebruik om die simplistiese kinetiese uitset te bereken. Die hardeware-ontwerp fokus hoofsaaklik op die meting van versnelling, hoekversnelling en magnetiese invloede, wat essensi¨ele komponente van ’n traagheidsmetingseenheid [Eng: Inertial Measurement Unit (IMU)] is. Dit word bereik met ’n eenvoudige mikrokontroleerder [Eng: Microcontroller (MCU) ] wat gepaard gaan met die integrasie van databerging met flitsgeheue of ’n ”Google Sheet -platform. Verder word data-oordrag met ‘n Bluetooth Low Energy- (BLE-)toestel verwerk. Die parameters word dan op die toestel self ontleed, waar die ori¨entasie met behulp van ‘n kwaternioon-gebaseerde implementering bereken word. Daarbenewens word gefiltreerde versnelling gemeet en bereken in swaartekragvrye ruimte met behulp van die “Zero Velocity Update- (ZVU-)algoritme [Afr: Nulspoedopdatering]. Dit verseker dat snelheidsberekeninge akkuraat is en vry van drywing. Na aanleiding van snelheidsberekeninge, word posisieberaming saam met die meting van gang bereken, wat die meting van spoed en afstand afgelˆe moontlik maak, en sodoende dan die ontleding van die simplistiese kinetiese kragmeting moontlik maak. Die toepassing van die kwaternioon-gebaseerde ori¨entasieberekening het ho¨e akkuraatheid gelewer en die korrekte meting van daaropvolgende parameters moontlik gemaak. Meting van gang het egter gesukkel. Hoewel akkuraat, was daar ‘n probleem met verwerkingsblokkering tydens databerging. Met data- en bergingsegmentering het die akkuraatheid verbeter en sodoende berekening van gang met die vermo¨e om elke tree te meet. Verder was snelheid en posisieskatting vry van dryf en binne 10% akkuraat in vergelyking met die toetsmetodes. Ten slotte, deur die gekombineerde metings te gebruik, is ‘n spoedberekening (afstand afgelˆe oor tyd van gang) gebruik wat belofte toon vir die bereiking van ‘n betroubare kinetiese kragresultaat. Hierdie analise dui aan dat die voettoestel in staat is om ‘n relatiewe kragmeting te genereer, mits dit nie deur bergingsegmentering belemmer word nie. Die navorsing het ook aan die lig gebring dat die akkuraatheid van die Stryd-voettoestel nie akkuraat was wanneer dit vir stap ge¨ımplementeer is nie, wat soortgelyk sou wees vir ander modelle in die mark. Die voettoestel beklemtoon die teenstrydigheid met die teoretiese kinetiese kragmetode as toegepas op verskillende toestelle. Nietemin is die ruimte-tyd-metings meer konsekwent en met verdere navorsing, ontwikkeling en toetsing binne die individuele afdelings kan ‘n oopbron- gestandaardiseerde metode in wording kom.
AFRIKAANSE OPSOMMING: Uit die oogpunt van ‘n ingenieur dra hierdie navorsing by tot beter begrippe van kinetiese kragmeting tydens stap of hardloop met elke tree wat gegee word. Hierdie navorsing verken maniere om kragmetings toe te pas via ’n lae krag ingebedde apparaat (vasgemaak aan die voet). In die proses identifiseer die studie huidige markplekmodelle (nie noodwendig voetgebaseer nie), verfyn die meting van eksterne faktore soos tydruimtelike parameters, en identifiseer die algehele akkuraatheid van hierdie modelle. Deur omvattende navorsing, word ’n algoritme voorgestel vir die implementering van ’n netto massa/energiebalans-vergelyking. Hierdie algoritme, wat in sy eenvoudigste vorm toegepas is, het die behoefte aan spoed- (snelheid-)meting genoodsaak en het daarna ook die behoefte aan metings van gang, snelheid, posisie en ori¨entasie in vrye ruimte identifiseer. Hierdie tesis gee ’n uiteensetting van die meting en ontleding van verskeie ruimteliketemporale parameters deur gebruik te maak van n ingebedde voettoestel. Sodra dit toegepas is, word die parameters ontleed en gebruik om die simplistiese kinetiese uitset te bereken. Die hardeware-ontwerp fokus hoofsaaklik op die meting van versnelling, hoekversnelling en magnetiese invloede, wat essensi¨ele komponente van ’n traagheidsmetingseenheid [Eng: Inertial Measurement Unit (IMU)] is. Dit word bereik met ’n eenvoudige mikrokontroleerder [Eng: Microcontroller (MCU) ] wat gepaard gaan met die integrasie van databerging met flitsgeheue of ’n ”Google Sheet -platform. Verder word data-oordrag met ‘n Bluetooth Low Energy- (BLE-)toestel verwerk. Die parameters word dan op die toestel self ontleed, waar die ori¨entasie met behulp van ‘n kwaternioon-gebaseerde implementering bereken word. Daarbenewens word gefiltreerde versnelling gemeet en bereken in swaartekragvrye ruimte met behulp van die “Zero Velocity Update- (ZVU-)algoritme [Afr: Nulspoedopdatering]. Dit verseker dat snelheidsberekeninge akkuraat is en vry van drywing. Na aanleiding van snelheidsberekeninge, word posisieberaming saam met die meting van gang bereken, wat die meting van spoed en afstand afgelˆe moontlik maak, en sodoende dan die ontleding van die simplistiese kinetiese kragmeting moontlik maak. Die toepassing van die kwaternioon-gebaseerde ori¨entasieberekening het ho¨e akkuraatheid gelewer en die korrekte meting van daaropvolgende parameters moontlik gemaak. Meting van gang het egter gesukkel. Hoewel akkuraat, was daar ‘n probleem met verwerkingsblokkering tydens databerging. Met data- en bergingsegmentering het die akkuraatheid verbeter en sodoende berekening van gang met die vermo¨e om elke tree te meet. Verder was snelheid en posisieskatting vry van dryf en binne 10% akkuraat in vergelyking met die toetsmetodes. Ten slotte, deur die gekombineerde metings te gebruik, is ‘n spoedberekening (afstand afgelˆe oor tyd van gang) gebruik wat belofte toon vir die bereiking van ‘n betroubare kinetiese kragresultaat. Hierdie analise dui aan dat die voettoestel in staat is om ‘n relatiewe kragmeting te genereer, mits dit nie deur bergingsegmentering belemmer word nie. Die navorsing het ook aan die lig gebring dat die akkuraatheid van die Stryd-voettoestel nie akkuraat was wanneer dit vir stap ge¨ımplementeer is nie, wat soortgelyk sou wees vir ander modelle in die mark. Die voettoestel beklemtoon die teenstrydigheid met die teoretiese kinetiese kragmetode as toegepas op verskillende toestelle. Nietemin is die ruimte-tyd-metings meer konsekwent en met verdere navorsing, ontwikkeling en toetsing binne die individuele afdelings kan ‘n oopbron- gestandaardiseerde metode in wording kom.
Description
Thesis (MEng)--Stellenbosch University, 2024.