The influence of pristine graphene on conventional concrete

Date
2024-02
Journal Title
Journal ISSN
Volume Title
Publisher
Stellenbosch : Stellenbosch University
Abstract
ENGLISH ABSTRACT: Population growth and rapid urbanisation have brought forth the demand for infrastructure development and the need for durable, low cost and accessible materials. Material compositions such as concrete are commonly used in the built environment. Cement is the primary binding agent in concrete. To produce one metric ton of cement, 0.59 metric ton of CO2 is emitted into the atmosphere (IEA, 2022). The Global Cement & Concrete Association (GCCA) implemented the Net Zero Emissions vision 2050 to reduce the industry’s CO2 emissions. Significantly reducing the amount of cement used in concrete is a viable strategy to lower CO2 emissions during this transitional period towards Net Zero Emissions 2050. This can be achieved by increasing the mechanical and durability properties of concrete whilst reducing the cement content. This research study aims to substantially improve the mechanical and durability properties of conventional concrete by using pristine graphene (PG), which has the potential to ultimately reduce the carbon footprint of cement-based materials (CBMs). PG used in concrete has shown the potential to improve concrete’s mechanical and durability properties significantly, but to unlock the full potential of PG has been one of the greatest challenges. Thus, to unlock the potential of PG and improve the mechanical and durability properties of conventional concrete, different PG application techniques (PGATs) were developed. These PGATs are known as pre-dispersion methods and have two functions namely, 1) reduce the number of layered graphene (exfoliate) and 2) facilitate the distribution of graphene throughout the cementitious matrix. This is done by using three different pre-dispersion methods namely, 1) wet pre-dispersion, 2) dry pre-dispersion and 3) combined (wet and dry) pre-dispersion. All three pre-dispersion methods were used in this study. The PG was obtained from First Graphene Ltd Australia. Two PG forms namely, flake (PUREGRAPH) and agglomerate (PUREGRAPH AQUA) were used in this study. The PG in flake and agglomerate form that was used has a lateral platelet size of 56.9 μm and 52.1 μm, respectively. Additionally, the PGATs aims to resolve some of conventional concrete’s oldest problems. Concrete is described as a heterogeneous material. Therefore, concrete is not uniform in composition due to the difference in stiffness of each traditional constituent (sand, cement and coarse aggregate). The difference in stiffness causes predominantly smaller sized particles to be situated in a region near the surface or aggregates when concrete is formed. This causes porous crystalline structures to form in a region around aggregates which are susceptible to mechanical failure and durability issues. This region is known as the interfacial transition zone (ITZ). Thus, this study strategically positioned PG in the ITZ to improve the bond between the mortar matrix and the surface of coarse aggregate to improve the mechanical and durability properties of conventional concrete. The compressive and in-direct tensile splitting strength of conventional concrete were improved by 18.8% and 7.6%, respectively after 56 days of water curing. Additionally, the amount of crystalline growth on the surface of the coarse aggregate were investigated to determine the bond between the mortar matrix and the surface of the coarse aggregate. The bond strength between the mortar matrix and the surface of the coarse aggregate was quantified by using a direct tensile test referred to as the ITZ strength test. PG improved the bond strength by 22.1% after 28 days of water curing. Furthermore, the oxygen permeability and water absorption were reduced by 42.8% and 17.4%, respectively. Therefore, PG applied to conventional concrete have shown the potential to improve the ITZ which directly influences the mechanical and durability properties. Although significant research still needs to be conducted, this study shows that PG could facilitate greener, stronger and longer lasting concrete as well as provide a partial solution to decrease the global cement consumption which will lower carbon emissions of the cement industry.
AFRIKAANSE OPSOMMING: Bevolkingsgroei en vinnige verstedeliking het die vraag na infrastruktuurontwikkeling en die behoefte aan duursame, lae koste en toeganklike materiale na vore gebring. Materiële samestellings soos beton word algemeen in die bou omgewing gebruik. Sement is die primêre bindmiddel in beton. Om een ton sement te produseer, word 0.59-ton CO2 in die atmosfeer vrygestel (IEA, 2022). Die “Global Cement & Concrete Association” (GCCA) het die “Net Zero Emissions”-visie 2050 geïmplementeer om die hoeveelheid CO2 vrygestel deur die sement en beton industrie te verminder. Die noemenswaardige vermindering van die hoeveelheid sement wat in beton gebruik word, is 'n lewensvatbare strategie om CO2 te verminder gedurende hierdie oorgangstydperk na “Net Zero Emissions” 2050. Dit kan bereik word deur die meganiese werkverrigting van beton te verhoog terwyl die sementinhoud verminder word. Hierdie navorsingstudie het ten doel om die meganiese en duursaamheidseienskappe van konvensionele beton aansienlik te verbeter deur ongerepte grafien (OG) te gebruik, wat die potensiaal het om uiteindelik die koolstofvoetspoor van sementgebaseerde materiale te verminder. OG wat in beton gebruik word, het die potensiaal getoon om beton se meganiese en duursaamheidseienskappe aansienlik te verbeter, maar om die volle potensiaal van PG te ontsluit, bly een van die grootste uitdagings. Dus, om die volle potensiaal van OG te gebruik en die meganiese en duursaamheidseienskappe van konvensionele beton te verbeter, is verskillende OG-toepassingstegnieke ontwikkel. Hierdie OG-toepassingstegnieke staan bekend as voorverspreidingsmetodes en het twee funksies, naamlik 1) om die aantal gelaagde grafien plate te verminder en 2) vergemaklik die verspreiding van grafien deur die sementagtige matriks. Al drie voorverspreidingsmetodes is in hierdie studie gebruik. Die OG is verkry van First Graphene Ltd in Australie. Twee OG-vorme naamlik vlok (PUREGRAPH) en agglomeraat (PUREGRAPH AQUA) is in hierdie studie gebruik. Die OG in vlok- en agglomeraatvorm wat in hierdie studie gebruik is, het 'n laterale plaatjiegrootte van onderskeidelik 56,9 μm en 52,1 μm. Die doel van die OG-toepassingstegnieke was om sommige van konvensionele beton se oudste probleme op te los. Beton word beskryf as 'n heterogene materiaal. Daarom is beton nie eenvormig in samestelling nie as gevolg van die verskil in styfheid van elke tradisionele bestanddeel (sand, sement en growwe aggregaat). Die verskil in styfheid veroorsaak dat oorwegend kleiner deeltjies in 'n gebied naby die oppervlak van die klip geleë is wanneer beton gevorm word. Dit veroorsaak dat poreuse kristallyne strukture vorm in 'n gebied rondom klip wat vatbaar is vir meganiese faling en duursaamheidskwessies. Hierdie gebied staan bekend as die koppelvlak oorgangsone (KOS). Die studie geposisioneer OG strategies in die KOS om die binding tussen die mortelmatriks en die oppervlak van klip te versterk om die meganiese en duursaamheidseienskappe van konvensionele beton te verbeter. Die druk- en indirekte treksterkte van beton is onderskeidelik met 18.8% en 7.6% verbeter na 56 dae se water kuring. Daarbenewens is die hoeveelheid kristal groei op die oppervlak van die growwe aggregaat ondersoek om die binding tussen die mortelmatriks en die oppervlak van die growwe aggregaat te bepaal. Die bindingssterkte tussen die mortelmatriks en die oppervlak van die growwe aggregaat is gekwantifiseer deur 'n direkte trektoets, bekend as die ITZ-sterktetoets, te gebruik. OG verbeter die bindingssterkte met 22.1% na 28 dae se water kuring. Verder is die suurstofdeurlaatbaarheid en waterabsorpsie met onderskeidelik 42.8% en 17.4% verminder. Daarom het PG wat op konvensionele beton toegepas word, die potensiaal getoon om die KOS te verbeter wat die meganiese en duursaamheidseienskappe direk beïnvloed. Alhoewel beduidende navorsing nog gedoen moet word, toon hierdie studie dat OG groener, sterker en langer blywende beton kan bewerkstellig, asook 'n gedeeltelike oplossing bied om die wêreldwye sementverbruik te verminder wat koolstofvrystellings van die sementbedryf sal verlaag.
Description
Thesis (MEng)--Stellenbosch University, 2024.
Keywords
Citation