Masters Degrees (Mechanical and Mechatronic Engineering)
Permanent URI for this collection
Browse
Browsing Masters Degrees (Mechanical and Mechatronic Engineering) by Subject "Active mass cooling"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
- ItemSustainable cooling alternatives for buildings(Stellenbosch : University of Stellenbosch, 2010-03) Vorster, Jacobus Adriaan; Dobson, R. T.; University of Stellenbosch. Faculty of Engineering. Dept. of Mechanical and Mechatronic Engineering.ENGLISH ABSTRACT: The thesis was initiated by a Consulting Engineering Company (KV3) as a research project to investigate various options in which the efficiency and energy utilisation of conventional air conditioning systems may be enhanced by using alternative and renewable energy. Initially, eight options had been identified and through a process of determining the degree of commercialisation the alternative options were reduced to three. These options, referred to as the sustainable cooling alternatives, are active mass cooling, night flushing and roof cooling system. The roof cooling system comprised a roof-pond, roof-spray, pump and storage tank. The roof cooling system was mathematically and experimentally modelled. The roof cooling experiment was performed under a variety of weather conditions with the roof-pond and storage tank temperatures continuously recorded. The experimentally recorded temperatures were compared to the temperatures generated by the theoretical simulation calculations for the same input and weather conditions. Good agreement was found between the mathematical and experimental model. The largest discrepancy found between the simulated temperature and the experimental temperature was in the order of 1 ºC. A one-room building has been assumed to serve as a basis to which the sustainable cooling alternatives could be applied to for theoretical simulation. The one-room building had four façade walls and a flat roof slab. Night flushing, active mass cooling and the roof cooling system were applied to the one-room building such that the room air temperature and space cooling load could theoretically be simulated. The theoretical simulations were also repeated for the case where the roof-pond and roof-spray were applied as standalone systems to the one-room building. The theoretical simulation calculations were performed for typical summer weather conditions of Stellenbosch, South Africa. Under base case conditions and for a room thermostat setting of 22 ºC the peak cooling load of the one-room building was 74.73 W/m². With the application of night flushing between the hours of 24:00 and 07:00, the room cooling load was reduced by 5.2% by providing 3.9 W/m² of cooling and reducing the peak room temperature by 1.4 ºC. The active mass cooling system was modelled by supplying water at a constant supply temperature of 15 ºC to a pipe network embedded in the roof slab of the one-room building. The sea may typically be considered as a cold water source for buildings situated at the coast. The active mass cooling system reduced the peak cooling load of the one-room building by 50% by providing 37.2 W/m² of cooling and reducing the peak room temperature by 6.7 ºC. When the roof-spray and roof-pond systems were applied as standalone systems to the oneroom building, the peak cooling load of the one-room building could be reduced by 30% and 51% respectively. This is equivalent to 22.3 W/m² of peak cooling by the roof-spray and 38 W/m² of peak cooling by the roof-pond. The roof-spray reduced the peak room temperature by 3.71 ºC while the roof-pond reduced the peak room temperature by 5.9 ºC. Applying the roof cooling system to the one-room building produced 46 W/m² of peak cooling which resulted in a 61.1% reduction in peak cooling load. The roof cooling system reduced the peak temperature by 8 ºC. By comparing the sustainable cooling alternatives, the roof cooling system showed to be the most effective in reducing the one-room building peak cooling load. Over a 24 hour period the roof cooling system reduced the net heat entry to the one-room building by 57.3%. In a further attempt to reduce the peak cooling load, the sustainable cooling alternatives were applied in combinations to the one-room building. The combination of night flushing and roof-spray reduced the peak cooling load by 36% while a combination of night flushing and active mass cooling reduced the peak cooling load by 55%. Combining night flushing with the roof-pond also yielded a 55% peak cooling load reduction. The combination of roofpond, active mass cooling and night flushing provided 51 W/m² of cooling which corresponded to a 68% reduction in peak cooling load. Utilising the sustainable cooling alternatives in a combination in the one-room building gave improved results when compared to the case where the sustainable cooling alternatives were employed as standalone systems. It is illustrated by means of a sensitivity analysis that the ability of the roof cooling system to produce cool water is largely influenced by ambient conditions, droplet diameter and roofspray rate. Under clear sky conditions, an ambient temperature of 15 ºC, relative humidity of 80%, a roof-spray rate of 0.02 kg/sm² and a roof-pond water level of 100mm, water could be cooled at a rate of 113 W/m². The roof-spray energy contributed to 28 W/m² whilst the night sky radiation was responsible for 85 W/m² of the water cooling. It must however be noted that the water of the roof cooling system can never be reduced to a temperature that is lower than the ambient dew point temperature.