Doctoral Degrees (Physiological Sciences)
Permanent URI for this collection
Browse
Browsing Doctoral Degrees (Physiological Sciences) by Subject "Amino acid starvation"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
- ItemDifferential tolerance of a cancer and a non-cancer cell line to amino acid deprivation : mechanistic insight and clinical potential(Stellenbosch : Stellenbosch University, 2012-03) Thomas, Mark Peter; Engelbrecht, Anna-Mart; Strijdom, Hans; Stellenbosch University. Faculty of Science. Dept. of Physiological Sciences.ENGLISH ABSTRACT: Introduction – Due to spatial separation from the native vascular bed, solid tumours develop regions with limited access to nutrients essential for growth and survival. The promotion of a process known as macroautophagy may facilitate in the maintenance of intracellular amino acid levels, through breakdown of cytoplasmic proteins, so that they remain available for macromolecular biosynthesis and ATP production. Several studies point to the potential ability of some cancers to temporarily increase autophagy and thereby prolong cell survival during metabolic stress. The validity of these claims is assessed when a commonly used breast cancer cell line and an epithelial breast cell line are starved of amino acids in this study. Furthermore, we go on to hypothesize that acute amino acid deprivation during treatment will result in an elevated sensitivity of MDAMB231 cells to doxorubicin toxicity but limit its cytotoxic side-effects in MCF12A cells. Methods and study design- Human breast cancer cells (MDAMB231) and breast epithelial cells (MCF12A) cultured in complete growth medium were compared to those incubated in medium containing no amino acids. Steady state autophagy levels were monitored using classical protein markers of autophagy (LC3-II and beclin-1) and the acidic compartmentalization in cells (Lysotracker™ red dye) in conjunction with autophagy inhibition (bafilomycin A1 and ATG5 siRNA). Cell viability was monitored using several techniques, including caspase 3/7 activity. ATP levels were assessed using a bioluminescent assay, while mass spectrometry based proteomics was used to quantify cellular amino acid levels. Similar techniques were used to monitor autophagy during doxorubicin treatment, while cellular doxorubicin localization was monitored using immunofluorescence microscopy. Finally, a completely novel GFP-LC3 mouse tumour model was designed to assess autophagy and caspase activity within tumours in vivo, during protein limitation and doxorubicin treatment. Results - Amino acid deprivation resulted in a transient increase in autophagy at approximately 6 hours of amino acid starvation in MDAMB231 cells. The amino acid content was preserved within these cells in an autophagy-dependent manner, a phenomenon that correlated with the maintenance of ATP levels. Inhibition of autophagy during these conditions resulted in decreased amino acid and ATP levels and increased signs of cell death. MCF12A cells displayed a greater tolerance to amino acid starvation during 24 hours of amino acid starvation. Evidence indicated that autophagy was important for the maintenance of amino acid and ATP levels in these cells and helped prevent starvation-induced cell death. Furthermore, data showed that concomitant amino acid withdrawal resulted in decreased cellular acidity in MDAMB231 cells, and increased acidity in MCF12A cells, during doxorubicin treatment. These changes correlated with evidence of increased cell death in MDAMB231 cells, but a relative protection in MCF12A cells. A novel model was used to apply these techniques in vivo, and although mice fed on a low protein diet during high dose doxorubicin treatment had increased mean survival and smaller tumour sizes, evidence suggested that autophagy is protecting a population of cells within these tumours. Conclusions - This novel approach to tumour sensitization could have several implications in the context of cancer therapy, and given the delicate relationship that autophagy has with the cancer microenvironment, efforts to determine the mechanisms involved in autophagy and sensitization could lead to new and innovative treatment opportunities for cancer management.