Browsing by Author "Kell, Douglas B."
Now showing 1 - 13 of 13
Results Per Page
Sort Options
- ItemBacterial dysbiosis and translocation in psoriasis vulgaris(Frontiers Media, 2019-02-04) Visser, Maria J. E.; Kell, Douglas B.; Pretorius, EtheresiaPsoriasis vulgaris is a chronic inflammatory skin condition, associated with both a physical and a psychological burden. Our understanding of the etiology of this disease remains incomplete. Conventionally, psoriasis has been viewed as a condition that manifests solely in the skin. However, the systemic inflammatory nature of this disease has been confirmed by the presence of a wide array of dysregulated cytokines and inflammatory markers in the serum of these patients. Both dysregulated gut and skin microbiomes have been found in association with psoriasis. An evident association also exists between inflammatory bowel disease and this condition. Regarding the skin microbiome, changes have been observed in the relative abundance of Firmicutes, Actinobacteria, and Proteobacteria. Additionally, Staphylococcus and Streptococcus spp. were detected more frequently in lesional skin. Alterations in the gut microbiome have been characterized by a decrease in the Bacteroidetes phylum and an increase in the Faecalibacterium genus. We suggest that dysbiosis of the skin and gut microbiota may contribute to psoriasis, by promoting the translocation of microbes from these sites into the bloodstream. Consistent with the Iron Dysregulation and Dormant Microbes hypothesis, these microorganisms are in a physiologically dormant state, but may be awakened periodically and shed their cell wall components, such as lipopolysaccharide and lipoteichoic acid. Both of these inflammagens may contribute significantly to maintaining a chronic inflammatory state in the host, such as is seen in individuals diagnosed with psoriasis.
- ItemCorrelative Light-Electron Microscopy detects lipopolysaccharide and its association with fibrin fibres in Parkinson’s Disease, Alzheimer’s Disease and Type 2 Diabetes Mellitus(Nature Research, 2018-11-14) De Waal, Greta M.; Engelbrecht, Lize; Davis, Tanja Andrea; De Villiers, Willem J. S.; Kell, Douglas B.; Pretorius, EtheresiaMany chronic diseases, including those classified as cardiovascular, neurodegenerative, or autoimmune, are characterized by persistent inflammation. The origin of this inflammation is mostly unclear, but it is typically mediated by inflammatory biomarkers, such as cytokines, and affected by both environmental and genetic factors. Recently circulating bacterial inflammagens such as lipopolysaccharide (LPS) have been implicated. We used a highly selective mouse monoclonal antibody to detect bacterial LPS in whole blood and/or platelet poor plasma of individuals with Parkinson’s Disease, Alzheimer’s type dementia, or Type 2 Diabetes Mellitus. Our results showed that staining is significantly enhanced (P < 0.0001) compared to healthy controls. Aberrant blood clots in these patient groups are characterized by amyloid formation as shown by the amyloid-selective stains thioflavin T and Amytracker™ 480 or 680. Correlative Light-Electron Microscopy (CLEM) illustrated that the LPS antibody staining is located in the same places as where amyloid fibrils may be observed. These data are consistent with the Iron Dysregulation and Dormant Microbes (IDDM) hypothesis in which bacterial inflammagens such as LPS are responsible for anomalous blood clotting as part of the aetiology of these chronic inflammatory diseases.
- ItemCovid-19 : the rollercoaster of fibrin(ogen), D-dimer, Von Willebrand Factor, P-selectin and their interactions with endothelial cells, platelets and erythrocytes(MDPI, 2020-07-21) Grobler, Corlia; Maphumulo, Siphosethu C.; Grobbelaar, L. Mireille; Bredenkamp, Jhade C.; Laubscher, Gert J.; Lourens, Petrus J.; Steenkamp, Janami; Kell, Douglas B.; Pretorius, EtheresiaSevere acute respiratory syndrome coronavirus 2 (SARS-Cov-2), also known as coronavirus disease 2019 (COVID-19)-induced infection, is strongly associated with various coagulopathies that may result in either bleeding and thrombocytopenia or hypercoagulation and thrombosis. Thrombotic and bleeding or thrombotic pathologies are significant accompaniments to acute respiratory syndrome and lung complications in COVID-19. Thrombotic events and bleeding often occur in subjects with weak constitutions, multiple risk factors and comorbidities. Of particular interest are the various circulating inflammatory coagulation biomarkers involved directly in clotting, with specific focus on fibrin(ogen), D-dimer, P-selectin and von Willebrand Factor (VWF). Central to the activity of these biomarkers are their receptors and signalling pathways on endothelial cells, platelets and erythrocytes. In this review, we discuss vascular implications of COVID-19 and relate this to circulating biomarker, endothelial, erythrocyte and platelet dysfunction. During the progression of the disease, these markers may either be within healthy levels, upregulated or eventually depleted. Most significant is that patients need to be treated early in the disease progression, when high levels of VWF, P-selectin and fibrinogen are present, with normal or slightly increased levels of D-dimer (however, D-dimer levels will rapidly increase as the disease progresses). Progression to VWF and fibrinogen depletion with high D-dimer levels and even higher P-selectin levels, followed by the cytokine storm, will be indicative of a poor prognosis. We conclude by looking at point-of-care devices and methodologies in COVID-19 management and suggest that a personalized medicine approach should be considered in the treatment of patients.
- ItemErythrocyte, Platelet, Serum Ferritin, and P-Selectin Pathophysiology implicated in severe hypercoagulation and vascular complications in COVID-19(MDPI, 2020-11-03) Venter, Chantelle; Bezuidenhout, Johannes Andries; Laubscher, Gert Jacobus; Lourens, Petrus Johannes; Steenkamp, Janami; Kell, Douglas B.; Pretorius, EtheresiaProgressive respiratory failure is seen as a major cause of death in severe acute respiratory syndrome coronavirus 2 (SARS-Cov-2)-induced infection. Relatively little is known about the associated morphologic and molecular changes in the circulation of these patients. In particular, platelet and erythrocyte pathology might result in severe vascular issues, and the manifestations may include thrombotic complications. These thrombotic pathologies may be both extrapulmonary and intrapulmonary and may be central to respiratory failure. Previously, we reported the presence of amyloid microclots in the circulation of patients with coronavirus disease 2019 (COVID-19). Here, we investigate the presence of related circulating biomarkers, including C-reactive protein (CRP), serum ferritin, and P-selectin. These biomarkers are well-known to interact with, and cause pathology to, platelets and erythrocytes. We also study the structure of platelets and erythrocytes using fluorescence microscopy (using the markers PAC-1 and CD62PE) and scanning electron microscopy. Thromboelastography and viscometry were also used to study coagulation parameters and plasma viscosity. We conclude that structural pathologies found in platelets and erythrocytes, together with spontaneously formed amyloid microclots, may be central to vascular changes observed during COVID-19 progression, including thrombotic microangiopathy, diffuse intravascular coagulation, and large-vessel thrombosis, as well as ground-glass opacities in the lungs. Consequently, this clinical snapshot of COVID-19 strongly suggests that it is also a true vascular disease and considering it as such should form an essential part of a clinical treatment regime.
- ItemLipopolysaccharide-binding protein (LBP) can reverse the amyloid state of fibrin seen or induced in Parkinson's disease(Public Library of Science, 2018) Pretorius, Etheresia; Page, Martin J.; Mbotwe, Sthembile; Kell, Douglas B.The thrombin-induced polymerisation of fibrinogen to form fibrin is well established as a late stage of blood clotting. It is known that Parkinson’s Disease (PD) is accompanied by dysregulation in blood clotting, but it is less widely known as a coagulopathy. In recent work, we showed that the presence of tiny amounts of bacterial lipopolysaccharide (LPS) in healthy individuals could cause clots to adopt an amyloid form, and this could be observed via scanning electron microscopy (SEM) or via the fluorescence of thioflavin-T. This could be prevented by the prior addition of lipopolysaccharide-binding protein (LBP). We had also observed by SEM this unusual clotting in the blood of patients with Parkinson’s Disease. We hypothesised, and here show, that this too can be prevented by LBP in the context of PD. This adds further evidence implicating inflammatory microbial cell wall products as an accompaniment to the disease, and may be part of its aetiology. This may lead to novel treatment strategies in PD designed to target microbes and their products.
- ItemLipopolysaccharide-binding protein (LBP) reverses the amyloid state of fibrin seen in plasma of type 2 diabetics with cardiovascular comorbidities(Nature Research, 2017-08-29) Pretorius, Etheresia; Mbotwe, Sthembile; Kell, Douglas B.Type 2 diabetes (T2D) has many cardiovascular complications, including a thrombotic propensity. Many such chronic, inflammatory diseases are accompanied (and may be exacerbated, and possibly even largely caused) by amyloid fibril formation. Recognising that there are few strong genetic associations underpinning T2D, but that amyloidogenesis of amylin is closely involved, we have been seeking to understand what might trigger the disease. Serum levels of bacterial lipopolysaccharide are raised in T2D, and we recently showed that fibrin(ogen) polymerisation during blood clotting can be affected strongly by LPS. The selectivity was indicated by the regularisation of clotting by lipopolysaccharide-binding protein (LBP). Since coagulopathies are a hallmark of T2D, we wondered whether they might too be caused by LPS (and reversed by LBP). We show here, using SEM and confocal microscopy, that platelet-poor-plasma from subjects with T2D had a much greater propensity for hypercoagulability and for amyloidogenesis, and that these could both be reversed by LBP. These data imply that coagulopathies are an important feature of T2D, and may be driven by ‘hidden’ LPS. Given the prevalence of amyloid formation in the sequelae of diabetes, this opens up novel strategies for both the prevention and treatment of T2D.
- ItemParkinson’s disease : a systemic inflammatory disease accompanied by bacterial inflammagens(Frontiers Media, 2019-08-27) Adams, Buin; Nunes, J. Massimo; Page, Martin J.; Roberts, Timothy; Carr, Jonathan; Nell, Theo A.; Kell, Douglas B.; Pretorius, EtheresiaParkinson’s disease (PD) is a well-known neurodegenerative disease with a strong association established with systemic inflammation. Recently, the role of the gingipain protease group from Porphyromonas gingivalis was implicated in Alzheimer’s disease and here we present evidence, using a fluorescent antibody to detect gingipain R1 (RgpA), of its presence in a PD population. To further elucidate the action of this gingipain, as well as the action of the lipopolysaccharide (LPS) from P. gingivalis, low concentrations of recombinant RgpA and LPS were added to purified fluorescent fibrinogen. We also substantiate previous findings regarding PD by emphasizing the presence of systemic inflammation via multiplex cytokine analysis, and demonstrate hypercoagulation using thromboelastography (TEG), confocal and electron microscopy. Biomarker analysis confirmed significantly increased levels of circulating proinflammatory cytokines. In our PD and control blood analysis, our results show increased hypercoagulation, the presence of amyloid formation in plasma, and profound ultrastructural changes to platelets. Our laboratory analysis of purified fibrinogen with added RgpA, and/or LPS, showed preliminary data with regards to the actions of the protease and the bacterial membrane inflammagen on plasma proteins, to better understand the nature of established PD.
- ItemA possible role of amyloidogenic blood clotting in the evolving haemodynamics of female migraine-with-aura : results from a pilot study(Frontiers Media, 2019-11-26) De Villiers, Sulette; Bester, Janette; Kell, Douglas B.; Pretorius, EtheresiaIntroduction: Migraine is a debilitating primary headache disorder with a poorly understood aetiology. An extensive body of literature supports the theory of migraine as a systemic vascular inflammatory disorder characterised by endothelial dysfunction. It is also well-known that chronic inflammation results in an excessive burden of oxidative stress and therefore cellular dysfunction. In this study the effects of excessive oxidative stress through the phases of female migraine-with-aura (FMA) were evaluated by examining the health of the systems of haemostasis. Methods: Blood was obtained from 11 FMA patients at baseline and during the headache phase of migraine, as well as from 8 healthy age-matched female controls. Samples were analysed using thromboelastography (TEG) to evaluate viscoelastic profiles, light microscopy for erythrocyte morphology, Scanning Electron Microscopy (SEM) for erythrocyte and fibrin clot structure, confocal microscopy for β-amyloid detection in fibrin clots. Results: Viscoelastic profiles from platelet poor plasma showed decreased clot reaction times in FMA at baseline (95% CI [5.56, 8.41]) vs. control (95% CI [7.22, 11.68]); as well as decreased time to maximum thrombus generation for the same comparison (95% CI [6.78, 10.20] vs. [8.90, 12.96]). Morphological analysis of erythrocytes indicated widespread macrocytosis, poikilocytosis and eryptosis in the migraineurs. Analysis of fibrin networks indicated that this hypercoagulability may be a result of aberrant fibrin polymerisation kinetics caused by the adoption of a β-amyloid conformation of fibrin(ogen). Conclusion: The results reaffirm the hypercoagulable state in migraine, and would suggest that this state is most likely a result of a systemic inflammatory state which induces oxidative damage to both erythrocytes and fibrin(ogen) in female episodic migraine-with-aura. Furthermore, if the amylodogenic changes to fibrin(ogen) were observed in a larger cohort, this would support theories of micro-embolisation in migraine-with-aura.
- ItemThe potential of LPS-binding protein to reverse amyloid formation in plasma fibrin of individuals with Alzheimer-type dementia(Frontiers Media, 2018-08-22) Pretorius, Etheresia; Bester, Janette; Page, Martin J.; Kell, Douglas B.; Miklossy, JudithMany studies indicate that there is a (mainly dormant) microbial component in the progressive development of Alzheimer-type dementias (ADs); and that in the case of Gram-negative organisms, a chief culprit might be the shedding of the highly inflammagenic lipopolysaccharide (LPS) from their cell walls. We have recently shown that a highly sensitive assay for the presence of free LPS [added to platelet poor plasma (PPP)] lies in its ability (in healthy individuals) to induce blood to clot into an amyloid form. This may be observed in a SEM or in a confocal microscope when suitable amyloid stains (such as thioflavin T) are added. This process could be inhibited by human lipopolysaccharide-binding protein (LBP). In the current paper, we show using scanning electron microscopy and confocal microscopy with amyloid markers, that PPP taken from individuals with AD exhibits considerable amyloid structure when clotting is initiated with thrombin but without added LPS. Furthermore, we could show that this amyloid structure may be reversed by the addition of very small amounts of LBP. This provides further evidence for a role of microbes and their inflammagenic cell wall products and that these products may be involved in pathological clotting in individuals with AD.
- ItemPrevalence of amyloid blood clots in COVID-19 plasma(medRxiv, 2020) Pretorius, Etheresia; Venter, Chantelle; Laubscher, Gert J.; Lourens, Petrus J.; Steenkamp, Janami; Kell, Douglas B.The rapid detection of COVID-19 uses genotypic testing for the presence of SARS-Cov-2 virus in nasopharyngeal swabs, but it can have a poor sensitivity. A rapid, host-based physiological test that indicated whether the individual was infected or not would be highly desirable. Coagulaopathies are a common accompaniment to COVID-19, especially micro-clots within the lungs. We show here that microclots can be detected in the native plasma of COVID-19 patient, and in particular that such clots are amyloid in nature as judged by a standard fluorogenic stain. This provides a rapid and convenient test (P<0.0001), and suggests that the early detection and prevention of such clotting could have an important role in therapy.
- ItemPrevalence of readily detected amyloid blood clots in unclotted type 2 diabetes mellitus and COVID-19 plasma : a preliminary report(BMC (part of Springer Nature), 2020-11-17) Pretorius, Etheresia; Venter, Chantelle; Laubscher, Gert J.; Lourens, Petrus J.; Steenkamp, Janami; Kell, Douglas B.Background: Type 2 Diabetes Mellitus (T2DM) is a well-known comorbidity to COVID-19 and coagulopathies are a common accompaniment to both T2DM and COVID-19. In addition, patients with COVID-19 are known to develop micro-clots within the lungs. The rapid detection of COVID-19 uses genotypic testing for the presence of SARS-Cov-2 virus in nasopharyngeal swabs, but it can have a poor sensitivity. A rapid, host-based physiological test that indicated clotting severity and the extent of clotting pathologies in the individual who was infected or not would be highly desirable. Methods: Platelet poor plasma (PPP) was collected and frozen. On the day of analysis, PPP samples were thawed and analysed. We show here that microclots can be detected in the native plasma of twenty COVID-19, as well as ten T2DM patients, without the addition of any clotting agent, and in particular that such clots are amyloid in nature as judged by a standard fluorogenic stain. Results were compared to ten healthy age-matched individuals. Results: In COVID-19 plasma these microclots are significantly increased when compared to the levels in T2DM. Conclusions: This fluorogenic test may provide a rapid and convenient test with 100% sensitivity (P < 0.0001) and is consistent with the recognition that the early detection and prevention of such clotting can have an important role in therapy.
- ItemSerum amyloid A binds to fibrin(ogen), promoting fibrin amyloid formation(Nature Research (part of Springer Nature), 2019-02-28) Page, Martin J.; Thomson, Greig J. A.; Nunes, J. Massimo; Engelbrecht, Anna-Mart; Nell, Theo A.; De Villiers, Willem J. S.; De Beer, Maria C.; Engelbrecht, Lize; Kell, Douglas B.; Pretorius, EtheresiaComplex associations exist between inflammation and thrombosis, with the inflammatory state tending to promote coagulation. Fibrinogen, an acute phase protein, has been shown to interact with the amyloidogenic ß-amyloid protein of Alzheimer’s disease. However, little is known about the association between fibrinogen and serum amyloid A (SAA), a highly fibrillogenic protein that is one of the most dramatically changing acute phase reactants in the circulation. To study the role of SAA in coagulation and thrombosis, in vitro experiments were performed where purified human SAA, in concentrations resembling a modest acute phase response, was added to platelet-poor plasma (PPP) and whole blood (WB), as well as purified and fluorescently labelled fibrinogen. Results from thromboelastography (TEG) suggest that SAA causes atypical coagulation with a fibrin(ogen)-mediated increase in coagulation, but a decreased platelet/fibrin(ogen) interaction. In WB scanning electron microscopy analysis, SAA mediated red blood cell (RBC) agglutination, platelet activation and clumping, but not platelet spreading. Following clot formation in PPP, the presence of SAA increased amyloid formation of fibrin(ogen) as determined both with auto-fluorescence and with fluorogenic amyloid markers, under confocal microcopy. SAA also binds to fibrinogen, as determined with a fluorescent-labelled SAA antibody and correlative light electron microscopy (CLEM). The data presented here indicate that SAA can affect coagulation by inducing amyloid formation in fibrin(ogen), as well as by propelling platelets to a more prothrombotic state. The discovery of these multiple and complex effects of SAA on coagulation invite further mechanistic analyses.
- ItemSubstantial fibrin amyloidogenesis in type 2 diabetes assessed using amyloid-selective fluorescent stains(Biomed Central, 2017) Pretorius, Etheresia; Page, Martin J.; Engelbrecht, Lize; Ellis, Graham C.; Kell, Douglas B.Background: We have previously shown that many chronic, inflammatory diseases are accompanied, and possibly partly caused or exacerbated, by various coagulopathies, manifested as anomalous clots in the form of ‘dense matted deposits’. More recently, we have shown that these clots can be amyloid in nature, and that the plasma of healthy controls can be induced to form such clots by the addition of tiny amounts of bacterial lipopolysaccharide or lipoteichoic acid. Type 2 diabetes (T2D) is also accompanied by raised levels of LPS. Methods: We use superresolution and confocal microscopies to investigate the amyloid nature of clots from healthy and T2D individuals. Results: We show here, with the established stain thioflavin T and the novel stains Amytracker™ 480 and 680, that the clotting of plasma from type 2 diabetics is also amyloid in nature, and that this may be prevented by the addition of suitable concentrations of LPS-binding protein. Conclusion; This implies strongly that there is indeed a microbial component to the development of type 2 diabetes, and suggests that LBP might be used as treatment for it and its sequelae.