Browsing by Author "Graefe, Rainer"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
- ItemEvaluation of C# for a station controller in a reconfigurable manufacturing system(2016-12) Graefe, Rainer; Basson, A. H.; Stellenbosch University. Faculty of Engineering. Dept. of Mechanical and Mechatronic Engineering.ENGLISH ABSTRACT: Reconfigurable manufacturing systems (RMSs) are aimed at dynamic situations, such as varying products, variations in production volume requirements and changes in available resources. RMSs distinguish themselves from other types of manufacturing systems in that they can quickly adapt to a new product being introduced without the need for long reconfiguration times, and can therefore cost effectively produce smaller batch sizes. RMSs in research environments in most cases used Agent Based Control (ABC), but the main automation vendors in the industry do not support ABC. This inhibits the acceptance of RMSs by the industry. For this research, C# was investigated as an alternative to ABC, since C# can provide for many of the functionalities of agents, yet is a more widely known language than ABC. Furthermore, C# is an object-oriented programming (OOP) language and thus possesses characteristics aligned with the core characteristics of reconfigurable manufacturing systems. The focus of this thesis is to determine the suitability of C# for the development of the control software for RMSs. This thesis describes the design, implementation, testing and evaluation of a reconfigurable stacking and buffering station. The controller was implemented in C# and made use of the ADACOR architecture. The physical test-setup was built to evaluate the reconfigurability of the controller in a series of reconfiguration experiments. The thesis showed that the controller could handle all the hardware interfaces without problems, since C# generally simplifies the task of hardware interfacing. OOP characteristics helped making developing and maintaining the code an intuitive task. The stacking station handled all communication with the cell controller correctly, which proved that it could easily be integrated into a distributed control architecture.