Browsing by Author "Chegoua, Novel N."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemDistinct host-immune response toward species related intracellular mycobacterial killing : a transcriptomic study(Taylor & Francis, 2020) Madhvi, Abhilasha; Mishra, Hridesh; Chegoua, Novel N.; Tromp, Gerard; Van Heerden, Carel J.; Pietersen, R. D.; Leisching, Gina; Baker, BienyameenThe comparison of the host immune response when challenged with pathogenic and nonpatho- genic species of mycobacteria can provide answers to the unresolved question of how pathogens subvert or inhibit an effective response. We infected human monocyte derived macrophages (hMDMs) with different species of mycobacteria, in increasing order of pathogenicity, i.e. M. smegmatis, M. bovis BCG, and M. tuberculosis R179 that had been cultured in the absence of detergents. RNA was isolated post-infection and transcriptomic analysis using amplicons (Ampliseq) revealed 274 differentially expressed genes (DEGs) across three species, out of which we selected 19 DEGs for further validation. We used qRT-PCR to confirm the differential expression of 19 DEGs. We studied biological network through Ingenuity Pathway Analysis® (IPA) which revealed up-regulated pathways of the interferon and interleukin family related to the killing of M. smegmatis. Apart from interferon and interleukin family, we found one up-regulated (EIF2AK2) and two down-regulated (MT1A and TRIB3) genes as unique potential targets found by Ampliseq and qRT-PCR which may be involved in the intracellular mycobacterial killing. The roles of these genes have not previously been described in tuberculosis. Multiplex ELISA of culture supernatants showed increased host immune response toward M. smegmatis as compared to M. bovis BCG and M.tb R179. These results enhance our understanding of host immune response against M.tb infection.
- ItemDistinct serum biosignatures are associated with different tuberculosis treatment outcomes(Elsevier, 2019) Ronachera, Katharina; Chegoua, Novel N.; Kleynhansa, Leanie; Siawayac, Joel F. Djoba; Du Plessis, Nelita; Loxton, Andre G.; Maasdorp, Elizna; Tromp, Gerard; Kidd, Martin; Stanleya, Kim; Kriela, Magdalena; Menezesa, Angela; Gutschmidta, Andrea; Van Der Spuya, Gian D.; Warrena, Robin M.; Dietzee, Reynaldo; Okweraf, Alphonse; Thielg, Bonnie; Belisleh, John T.; Cliffi, Jacqueline M.; Boomg, W. Henry; Johnsong, John L.; Van Heldena, Paul D.; Dockrelli, Hazel M.; Walzla, GerhardENGLISH ABSTRACT: Biomarkers for TB treatment response and outcome are needed. This study characterize changes in immune profiles during TB treatment, define biosignatures associated with treatment outcomes, and explore the feasibility of predictive models for relapse. Seventy-two markers were measured by multiplex cytokine array in serum samples from 78 cured, 12 relapsed and 15 failed treatment patients from South Africa before and during therapy for pulmonary TB. Promising biosignatures were evaluated in a second cohort from Uganda/Brazil consisting of 17 relapse and 23 cured patients. Thirty markers changed significantly with different response patterns during TB treatment in cured patients. The serum biosignature distinguished cured from relapse patients and a combination of two clinical (time to positivity in liquid culture and BMI) and four immunological parameters (TNF-β, sIL-6R, IL-12p40 and IP-10) at diagnosis predicted relapse with a 75% sensitivity (95%CI 0.38–1) and 85% specificity (95%CI 0.75–0.93). This biosignature was validated in an independent Uganda/Brazil cohort correctly classifying relapse patients with 83% (95%CI 0.58–1) sensitivity and 61% (95%CI 0.39–0.83) specificity. A characteristic biosignature with value as predictor of TB relapse was identified. The repeatability and robustness of these biomarkers require further validation in well-characterized cohorts.