Prediction of axial compressor blade vibration by modelling fluid-structure interaction

dc.contributor.advisorVan der Spuy, S. J.en_ZA
dc.contributor.advisorVenter, Gerharden_ZA
dc.contributor.authorBrandsen, Jacobus Danielen_ZA
dc.contributor.otherStellenbosch University. Faculty of Engineering. Dept. of Mechanical and Mechatronic Engineering.en_ZA
dc.date.accessioned2013-11-24T18:41:24Zen_ZA
dc.date.accessioned2013-12-13T14:59:10Z
dc.date.available2013-11-24T18:41:24Zen_ZA
dc.date.available2013-12-13T14:59:10Z
dc.date.issued2013-12en_ZA
dc.descriptionThesis (MScEng)-- Stellenbosch University, 2013.en_ZA
dc.description.abstractENGLISH ABSTRACT: The Council for Scientific and Industrial Research has developed a vibration excitation system. The system is designed to excite the rotor blades of an axial compressor in the specified vibration mode and at the specified frequency. The vibration excitation system was tested on Stellenbosch University’s Rofanco compressor test bench. A two-way staggered fluid-structure interaction (FSI) model was created that was capable of simulating the vibration of the rotor blades excited by the system. The results of the FSI model were verified using available experimental data. It was concluded that the FSI model is able to recreate the vibration excited by the system to within the desired level of accuracy. In addition, the results of the FSI model showed that the vibration excitation system should be able to excite the blades in the selected vibration mode and at the selected frequency provided that the excitation frequency is close the natural frequency of the first bending mode. The results also suggested that a transient computational fluid dynamics model should be sufficient for the prediction of the aerodynamic forces acting on the rotor blades. Furthermore, a one-way staggered FSI model should be adequate for calculating the motions of the blades.en_ZA
dc.description.abstractAFRIKAANSE OPSOMMING: Die Wetenskaplike en Nywerheidnavorsingsraad het ’n vibrasie-opwekkingstelsel ontwerp om die rotorlemme van ’n aksiaalvloei kompressor in die gespesifiseerde vibrasiemodus en teen die gespesifiseerde frekwensie op te wek. Die vibrasieopwekkingstelsel is met behulp van die Universiteit Stellenbosch se Rofanco kompressortoetsbank getoets. Daarna is ’n tweerigting vloeistof-struktuur-interaksie model geskep om die vibrasie van die rotorlemme, wat deur die stelsel opgewek is, te simuleer. Beskikbare eksperimentele data is gebruik om die resultate van die vloeistof-struktuur-interaksie model te bevestig. Die gevolgtrekking is gemaak dat die model wél die vibrasie van die lemme met die nodige akkuraatheid kan simuleer. Die resultate van die vloeistof-struktuur-interaksie model toon ook dat die stelsel die lemme in die gekose vibrasiemodus en teen die gekose frekwensie behoort te kan opwek, solank die opwekkingsfrekwensie na aan die natuurlike frekwensie van die eerste buigmodus is. Voorts dui die resultate daarop dat ’n berekeningsvloeimeganika model die aërodinamiese laste van die lemme sal kan voorspel. ’n Eenrigting vloeistof-struktuur-interaksie model behoort voldoende te wees om die beweging van die rotorlemme te bereken.af_ZA
dc.format.extentxv, 123 p. : ill.
dc.identifier.urihttp://hdl.handle.net/10019.1/85616
dc.language.isoen_ZA
dc.publisherStellenbosch : Stellenbosch Universityen_ZA
dc.rights.holderStellenbosch Universityen_ZA
dc.subjectFluid-structure interactionen_ZA
dc.subjectSelf-induced vibrationen_ZA
dc.subjectBlades -- Testingen_ZA
dc.subjectBlades -- Vibrationen_ZA
dc.subjectDissertations -- Mechanical and mechatronic engineeringen_ZA
dc.subject.otherTheses -- Mechanical and mechatronic engineeringen_ZA
dc.titlePrediction of axial compressor blade vibration by modelling fluid-structure interactionen_ZA
dc.typeThesisen_ZA
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
brandsen_prediction_2013.pdf
Size:
11.99 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.98 KB
Format:
Plain Text
Description: