The role of phosphatase activity and expression in glucocorticoid modulation of preosteoblasts

dc.contributor.advisorFerris, W. F.en_ZA
dc.contributor.advisorMoolman-Smook, J. C.en_ZA
dc.contributor.authorSanderson, Michelineen_ZA
dc.contributor.otherUniversity of Stellenbosch. Faculty of Health Sciences. Dept. of Medicine. Internal Medicine.en_ZA
dc.date.accessioned2011-10-11T06:17:25Zen_ZA
dc.date.accessioned2011-12-05T13:23:58Z
dc.date.available2011-10-11T06:17:25Zen_ZA
dc.date.available2011-12-05T13:23:58Z
dc.date.issued2011-12en_ZA
dc.descriptionThesis (PhD (Med))--University of Stellenbosch, 2011.en_ZA
dc.description.abstractENGLISH ABSTRACT: The increase in the prescription and use of glucocorticoids (GCs) to treat various diseases and resulting decrease in bone density and development of osteoporosis is of growing concern. Glucocorticoid-induced osteoporosis (GCIO) is a relatively under-researched disease with the mechanism by which GCs affect bone metabolism not yet fully delineated. This holds especially true for the early events in bone development. The negative effects of GCs are predominantly seen in osteoblasts, the cells responsible for bone formation, in that GCs diminish both the numbers and function of osteoblastic cells. Osteoblast precursor cell proliferation is crucial to ensure the existence of a healthy pool of osteoblastic cells needed to form new bone after bone resorption by osteoclasts. Previously, it was shown that GCs reduce the proliferation of immortalised osteoblastic cell lines. In addition, early immortalised preosteoblasts were more sensitive to GCs than their mature counterparts. However, these cells have corrupted cell cycles; therefore, primitive primary mesenchymal stromal cells (MSCs) were used in this study to examine the effect of GCs on the mitogen-induced proliferation of early osteoblast precursor cells (naïve MSCs and preosteoblasts) using the synthetic GC, dexamethasone (Dex). Mitogenic conditions established for naïve rat mesenchymal stromal cells (rMSCs) indicated that mild (5% FBS) stimulation is sufficient to induce proliferation, whereas a higher FBS concentration (20% FBS) was mitogenic in primary preosteoblasts. It was also found that pharmacological doses of Dex drastically decreased the mitogen-induced proliferation of both naïve rat MSCs (rMSCs) and preosteoblasts. Mitogen-activated protein kinase (MAPK) signalling pathways, such as ERK1/2, govern cell proliferation. GCs have been shown to decrease the activity of ERK1/2, which is associated with decreased proliferation in osteoblastic cells. In the present study, western blot analysis showed that Dex reduced the proliferation-associated shoulder of the ERK1/2 activity profile in both naïve rMSCs and preosteoblasts. Moreover, the ERK1/2 signalling pathway was shown to be essential for mitogen-stimulated growth of naïve rMSCs and preosteoblasts as the MEK1/2 inhibitor, U0126, inhibited mitogen-induced proliferation. Using western blot analysis, it was shown that, after mitogen administration, ERK1/2 activity exhibited a typical proliferation profile, which was blocked by U0126. Protein tyrosine phosphatases (PTPs) dephosphorylate and inactivate ERK1/2. Utilising sodium vanadate, an inhibitor of PTPs, in vitro phosphatase assays revealed that PTP activity was the predominant phosphatase activity present in naïve rMSCs and preosteoblast lysates after concomitant mitogen and Dex stimulation. The mRNA of the dual specificity phosphatase, MKP-1, was rapidly (within 30 minutes) upregulated after mitogen and Dex administration in both naïve rMSCs and preosteoblasts. However, the protein expression pattern of MKP-1 did not correspond to the mRNA induction, suggesting that the MKP-1 protein could be subjected to rapid degradation. These findings suggest that MKP-1 could possibly be involved in the GC regulation of mitogen-induced proliferation of early osteoblast precursor cells, but closer investigation is needed to fully elucidate this role. In addition, the involvement of other PTPs should not be excluded and warrants further investigation. During the course of the present study, it was found that strong mitogenic stimulation with 20% FBS led to oncogene-induced senescence (OIS). Flow cytometry analysis revealed the presence of two populations in naïve rMSCs preparations and DNA content analysis was consistent with that of cells undergoing OIS. These results indicated that the more primitive osteoblast precursor cells (naïve rMSCs) are more responsive to mitogens than their mature counterparts (preosteoblasts). In addition, it was found that the magnitude of ERK1/2 activation was increased in naïve rMSC after strong mitogenic stimulation, indicating that naïve rMSCs are still highly sensitive to stimulation with strong mitogens. In summary, these findings show that Dex decreased the proliferation of naïve rMSCs and preosteoblasts concomitantly with a decrease in ERK1/2 activity. In addition, Dex upregulated MKP-1 mRNA, but the same effect was not seen on the MKP-1 protein levels. Therefore, this suggests that PTP/s other than MKP-1 could be responsible for the inactivation of ERK1/2 by Dex, leading to decreased proliferation in naïve rMSCs and preosteoblasts. Further identification of PTPs that regulate osteoblast precursor cell numbers and function could lead to the elucidation of the mechanism through which GCs act to negatively influence bone density. This will improve our insights into the pathogenesis of GCIO and aid in the identification of therapeutic targets which can be exploited to develop new agents to treat osteoporosis.en_ZA
dc.description.abstractAFRIKAANSE OPSOMMING: Die toename in voorskrifte en gebruik van glukokortikoïede (GKs) om verskillende siektes te behandel en die gevolglike afname in been digtheid, is kommerwekkend. Glukokortikoïed geïnduseerde osteoporosis (GKIO) is 'n relatief min genavorste siekte waarvan die meganisme waardeur GKs been-metabolisme affekteer nog nie ten volle ontrafel is nie. Dit is veral waar ten opsigte van die vroeë stadia in beenontwikkeling. Die negatiewe uitwerking van GK's word oorwegend in osteoblaste, die selle wat verantwoordelik is vir beenformasie, waargeneem, waar GKs beide die getalle en funksie van osteoblaste verminder. Osteoblast voorloper-sel proliferasie is belangrik vir die handhawing van 'n gesonde poel osteoblastiese selle wat benodig word om nuwe been te vorm na beenresorpsie deur osteoklaste. Daar is gevind dat GKs proliferasie van verewigde preosteoblastiese sellyne verminder en dat jong verewigde preosteoblaste meer sensitief is vir GKs as hul meer volwasse ekwivalent. Die selle se selsiklusse is egter gekorrupteer en daarom was primitiewe primêre rot mesenkiem stromaselle (rMSCs) in hierde studie gebruik om die effek van GKs op mitogeen-geïnduseerde proliferasie van vroeë osteoblasvoorloperselle (naïwe MSC en preosteoblaste) deur die sintetiese GK, deksametasoon (Dex), te bestudeer. Mitogeniese kondisies vir naïwe rMSCs het getoon dat matige (5% FBS) stimulasie voldoende is om proliferasie te induseer, terwyl 'n hoë FBS konsentrasie (20% FBS) mitogenies was in primêre preosteoblaste. Daar is ook gevind dat farmokolgiese dosisse Dex die mitogeen-geïnduseerde proliferasie van beide naïwe rMSCs en preosteoblaste verminder. Die mitogeen-geïnduseerde protein kinase (MAPK) pad beheer selproliferasie. Die ekstrasellulêre gereguleerde kinase pad (ERK1/2) is voorheen as die hoofpad wat MBA 15.4 and MG 63 proliferasie beheer geïdentifiseer. Daar is gewys dat GKs die aktiwiteit van ERK1/2 verlaag en proliferasie van die selle verminder. In die huidige studie het western blot analise gewys dat Dex die proliferasie geassosieerde skoueraktiwiteit van die ERK1/2 aktiwiteitsprofiel in beide naïwe rMSCs en preosteoblaste verminder. Die noodsaaklike rol van ERK1/2 pad in mitogeen-gestimuleerde groei van die selle is bevestig deur die MEK1/2 inhibitor, U0126, wat die mitogeen-geïnduseerde proliferasie geïnhibeer het. Western blot analise het gewys dat die ERK1/2 aktiwiteit na mitogeen toediening 'n tipiese proliferasie profile toon wat deur U0126 geblokkeer word. Protein tirosien fosfatases (PTPs) defosforileer and inaktiveer ERK1/2. In vitro fosfatase bepalings met natrium vanadaat, 'n inhibitor van PTPs, het bevestig dat PTP die predominante fosfatase akitiwiteit is in naïwe rMSCs en preosteoblaste lisate is na gelyktydige mitogeen en Dex stimulasie. Die mRNA van die dubbele spesifisiteits fosfatase, MKP-1, is vinnig (binne 30 minute) opgereguleer is na mitogeen en Dex toediening in beide naïwe rMSCs en preosteoblaste. Die proteinekspressie van MKP-1 het egter nie met die mRNA ekspressie ooreengestem nie, wat suggereer dat die MKP-1protein blootgestel is aan vinnige degradasie. Hierdie bevindings stel voor dat MKP-1 moontlik 'n rol speel in die GC-regulering van mitogeen-geïnduseerde proliferasie van vroeë osteoblast voorloperselle maar verdere ondersoek is nodig om die rol ten volle te verklaar. Die betrokkenheid van ander PTPs moet egter nie uitgesluit word nie en regverdig verdere studie. Die huidige studie het bevind dat sterk mitogeniese-stimulasie met 20% FBS tot onkogene- geïnduseerde selgroeistilte (senescence) (OIS) lei. Vloeisitometriese analise het die teenwoordigheid van twee afsonderlike populasies getoon in die naïwe rMSCs preparate en die DNA inhoud was verenigbaar met die van selle wat OIS ondergaan. Die bevindinge stel voor dat die meer primatiewe osteoblast voorloperselle (naïwe rMSCs) is meer vatbaar vir mitogene-stimulasie as hul volwasse ekwivalente (preosteoblaste). Ook is gevind dat die mate van ERK1/2 aktivering hoër was in naïwe rMSCs, selfs na sterk mitogeniese stimulasie wat daarop dui dat naïwe rMSCs steeds hoogs sensitifief is vir stimulasie met sterk mitogene. In opsomming, dui die bevindinge dat Dex die proliferasie van naïwe rMSCs en preosteoblaste onderdruk wat met 'n verlaging van ERK1/2 aktiwiteit gepaard gaan. Verder, het Dex, MKP-1 mRNA opgereguleer maar die effek is nie op die proteinvlak waargeneem nie. Dit suggereer dat PTP/s anders as MKP-1 verantwoordelik kan wees vir die Dex inaktivering van ERK1/2 wat die proliferasie van naïwe rMSCs en preosteoblaste onderdruk.af
dc.format.extent187 p. : ill.
dc.identifier.urihttp://hdl.handle.net/10019.1/18052en_ZA
dc.language.isoen_ZAen_ZA
dc.publisherStellenbosch : University of Stellenboschen_ZA
dc.rights.holderStellenbosch University
dc.subjectGlucocorticoid modulationen_ZA
dc.subjectPreosteoblastsen_ZA
dc.subjectPhosphatase activity and expressionen_ZA
dc.subjectPhosphatasesen_ZA
dc.subjectDissertations -- Internal medicineen_ZA
dc.subjectTheses -- Internal medicineen_ZA
dc.titleThe role of phosphatase activity and expression in glucocorticoid modulation of preosteoblastsen_ZA
dc.typeThesis
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
sanderson_role_2011.pdf
Size:
9.02 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.98 KB
Format:
Plain Text
Description: