Inverse modelling and optimisation in numerical groundwater flow models using proportional orthogonal decomposition

dc.contributor.advisorVenter, Gerharden
dc.contributor.advisorBatton-Hubert, Mireilleen
dc.contributor.authorWise, John Nathanielen
dc.contributor.otherStellenbosch University. Faculty of Engineering. Dept. of Mechanical and Mechatronic Engineering.en_ZA
dc.date.accessioned2015-05-20T09:29:46Z
dc.date.available2015-05-20T09:29:46Z
dc.date.issued2015-03en
dc.descriptionThesis (PhD)--Stellenbosch University, 2015.en_ZA
dc.description.abstractENGLISH ABSTRACT: Numerical simulations are widely used for predicting and optimising the exploitation of aquifers. They are also used to determine certain physical parameters, for example soil conductivity, by inverse calculations, where the model parameters are changed until the model results correspond optimally to measurements taken on site. The Richards’ equation describes the movement of an unsaturated fluid through porous media, and is characterised as a non-linear partial differential equation. The equation is subject to a number of parameters and is typically computationally expensive to solve. To determine the parameters in the Richards’ equation, inverse modelling studies often need to be undertaken. In these studies, the parameters of a numerical model are varied until the numerical response matches a measured response. Inverse modelling studies typically require 100’s of simulations, which implies that parameter optimisation in unsaturated case studies is common only in small or 1D problems in the literature. As a solution to overcome the computational expense incurred in inverse modelling, the use of Proper Orthogonal Decomposition (POD) as a Reduced Order Modelling (ROM) method is proposed in this thesis to speed-up individual simulations. An explanation of the Finite Element Method (FEM) is given using the Galerkin method, followed by a detailed explanation of the Galerkin POD approach. In the development of the Galerkin POD approach, the method of reducing matrices and vectors is shown, and the treatment of Neumann and Dirichlet boundary values is explained. The Galerkin POD method is applied to two case studies. The first case study is the Kogelberg site in the Table Mountain Group near Cape Town in South Africa. The response of the site is modelled at one well over the period of 2 years, and is assumed to be governed by saturated flow, making it a linear problem. The site is modelled as a 3D transient, homogeneous site, using 15 layers and ≈ 20000 nodes, using the FEM implemented on the open-source software FreeFem++. The model takes the evapotranspiration of the fynbos vegetation at the site into consideration, allowing the calculation of annual recharge into the aquifer. The ROM is created from high-fidelity responses taken over time at different parameter points, and speed-up times of ≈ 500 are achieved, corresponding to speed-up times found in the literature for linear problems. The purpose of the saturated groundwater model is to demonstrate that a POD-based ROM can approximate the full model response over the entire parameter domain, highlighting the excellent interpolation qualities and speed-up times of the Galerkin POD approach, when applied to linear problems. A second case study is undertaken on a synthetic unsaturated case study, using the Richards’ equation to describe the water movement. The model is a 2D transient model consisting of ≈ 5000 nodes, and is also created using FreeFem++. The Galerkin POD method is applied to the case study in order to replicate the high-fidelity response. This did not yield in any speed-up times, since the full matrices of non-linear problems need to be recreated at each time step in the transient simulation. Subsequently, a method is proposed in this thesis that adapts the Galerkin POD method by linearising the non-linear terms in the Richards’ equation, in a method named the Linearised Galerkin POD (LGP) method. This method is applied to the same 2D synthetic problem, and results in speed-up times in the range of 10 to 100. The adaptation, notably, does not use any interpolation techniques, favouring a code intrusive, but physics-based, approach. While the use of an intrusively linearised POD approach adds to the complexity of the ROM, it avoids the problem of finding kernel parameters typically present in interpolative POD approaches. Furthermore, the interpolation and possible extrapolation properties inherent to intrusive POD-based ROM’s are explored. The good extrapolation properties, within predetermined bounds, of intrusive POD’s allows for the development of an optimisation approach requiring a very small Design of Experiments (DOE) sets (e.g. with improved Latin Hypercube sampling). The optimisation method creates locally accurate models within the parameter space using Support Vector Classification (SVC). The region inside of the parameter space in which the optimiser is allowed to move is called the confidence region. This confidence region is chosen as the parameter region in which the ROM meets certain accuracy conditions. With the proposed optimisation technique, advantage is taken of the good extrapolation characteristics of the intrusive POD-based ROM’s. A further advantage of this optimisation approach is that the ROM is built on a set of high-fidelity responses obtained prior to the inverse modelling study, avoiding the need for full simulations during the inverse modelling study. In the methodologies and case studies presented in this thesis, initially infeasible inverse modelling problems are made possible by the use of the POD-based ROM’s. The speed up times and extrapolation properties of POD-based ROM’s are also shown to be favourable. In this research, the use of POD as a groundwater management tool for saturated and unsaturated sites is evident, and allows for the quick evaluation of different scenarios that would otherwise not be possible. It is proposed that a form of POD be implemented in conventional groundwater software to significantly reduce the time required for inverse modelling studies, thereby allowing for more effective groundwater management.en_ZA
dc.description.abstractAFRIKAANSE OPSOMMING: Die Richards vergelyking beskryf die beweging van ’n vloeistof deur ’n onversadigde poreuse media, en word gekenmerk as ’n nie-lineêre parsiële differensiaalvergelyking. Die vergelyking is onderhewig aan ’n aantal parameters en is tipies berekeningsintensief om op te los. Om die parameters in die Richards vergelyking te bepaal, moet parameter optimering studies dikwels onderneem word. In hierdie studies, word die parameters van ’n numeriese model verander totdat die numeriese resultate die gemete resultate pas. Parameter optimering studies vereis in die orde van honderde simulasies, wat beteken dat studies wat gebruik maak van die Richards vergelyking net algemeen is in 1D probleme in die literatuur. As ’n oplossing vir die berekingskoste wat vereis word in parameter optimering studies, is die gebruik van Eie Ortogonale Ontbinding (POD) as ’n Verminderde Orde Model (ROM) in hierdie tesis voorgestel om individuele simulasies te versnel in die optimering konteks. Die Galerkin POD benadering is aanvanklik ondersoek en toegepas op die Richards vergelyking, en daarna is die tegniek getoets op verskeie gevallestudies. Die Galerkin POD metode word gedemonstreer op ’n hipotetiese gevallestudie waarin water beweging deur die Richards-vergelyking beskryf word. As gevolg van die nie-lineêre aard van die Richards vergelyking, het die Galerkin POD metode nie gelei tot beduidende vermindering in die berekeningskoste per simulasie nie. ’n Verdere gevallestudie word gedoen op ’n ware grootskaalse terrein in die Tafelberg Groep naby Kaapstad, Suid-Afrika, waar die grondwater beweging as versadig beskou word. Weens die lineêre aard van die vergelyking wat die beweging van versadigde water beskryf, is merkwaardige versnellings van > 500 in die ROM waargeneem in hierdie gevallestudie. Daarna was die die Galerkin POD metode aangepas deur die nie-lineêre terme in die Richards vergelyking te lineariseer. Die tegniek word die geLineariserde Galerkin POD (LGP) tegniek genoem. Die aanpassing het goeie resultate getoon, met versnellings groter as 50 keer wanneer die ROM met die oorspronklike simulasie vergelyk word. Al maak die tegniek gebruik van verder lineariseering, is die metode nogsteeds ’n fisika-gebaseerde benadering, en maak nie gebruik van interpolasie tegnieke nie. Die gebruik van ’n fisika-gebaseerde POD benaderings dra by tot die kompleksiteit van ’n volledige numeriese model, maar die kompleksiteit is geregverdig deur die merkwaardige versnellings in parameter optimerings studies. Verder word die interpolasie eienskappe, en moontlike ekstrapolasie eienskappe, inherent aan fisika-gebaseerde POD ROM tegnieke ondersoek in die navorsing. In die navorsing word ’n tegniek voorgestel waarin hierdie inherente eienskappe gebruik word om plaaslik akkurate modelle binne die parameter ruimte te skep. Die voorgestelde tegniek maak gebruik van ondersteunende vektor klassifikasie. Die grense van die plaaslik akkurate model word ’n vertrouens gebeid genoem. Hierdie vertrouens gebied is gekies as die parameter ruimte waarin die ROM voldoen aan vooraf uitgekiesde akkuraatheidsvereistes. Die optimeeringsbenadering vermy ook die uitvoer van volledige simulasies tydens die parameter optimering, deur gebruik te maak van ’n ROM wat gebaseer is op die resultate van ’n stel volledige simulasies, voordat die parameter optimering studie gedoen word. Die volledige simulasies word tipies uitgevoer op parameter punte wat gekies word deur ’n proses wat genoem word die ontwerp van eksperimente. Verdere hipotetiese grondwater gevallestudies is onderneem om die LGP en die plaaslik akkurate tegnieke te toets. In hierdie gevallestudies is die grondwater beweging weereens beskryf deur die Richards vergelyking. In die gevalle studie word komplekse en tyd-rowende modellerings probleme vervang deur ’n POD gebaseerde ROM, waarin individuele simulasies merkwaardig vinniger is. Die spoed en interpolasie/ekstrapolasie eienskappe blyk baie gunstig te wees. In hierdie navorsing is die gebruik van verminderde orde modelle as ’n grondwaterbestuursinstrument duidelik getoon, waarin voorsiening geskep word vir die vinnige evaluering van verskillende modellering situasies, wat andersins nie moontlik is nie. Daar word voorgestel dat ’n vorm van POD in konvensionele grondwater sagteware geïmplementeer word om aansienlike versnellings in parameter studies moontlik te maak, wat na meer effektiewe bestuur van grondwater sal lei.af_ZA
dc.format.extent155 pages : illustrationsen_ZA
dc.identifier.urihttp://hdl.handle.net/10019.1/97116
dc.language.isoen_ZAen_ZA
dc.publisherStellenbosch : Stellenbosch Universityen_ZA
dc.rights.holderStellenbosch Universityen_ZA
dc.subjectRichards' equationen_ZA
dc.subjectReduced order modellingen_ZA
dc.subjectProper orthogonal decompositionen_ZA
dc.subjectUCTDen_ZA
dc.titleInverse modelling and optimisation in numerical groundwater flow models using proportional orthogonal decompositionen_ZA
dc.typeThesisen_ZA
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
wise_inverse_2015.pdf
Size:
9.7 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Plain Text
Description: