Probability of default calibration for low default portfolios: revisiting the Bayesian approach

dc.contributor.advisorConradie, W. J.en_ZA
dc.contributor.authorVenter, Edward Stevensen_ZA
dc.contributor.otherStellenbosch University. Economic and Management Sciences. Dept. of Statistics and Actuarial Scienceen_ZA
dc.date.accessioned2016-03-09T14:53:48Z
dc.date.available2016-03-09T14:53:48Z
dc.date.issued2016-03
dc.descriptionThesis (MCom)--Stellenbosch University, 2016en_ZA
dc.description.abstractENGLISH ABSTRACT : The Probability of Default is one of the fundamental parameters used in the quantification of credit risk. When estimating the Probability of Default for portfolios with a low default nature the Probability of Default will always be underestimated. Therefore, a need exists for calibrating the Probability of Default for Low Default Portfolios. Various approaches have been considered in the literature review, with the main approaches being the Confidence Based Approach and Bayesian Approach. In this study the Bayesian Approach for calibrating the Probability of Default for portfolios of high grade credit is reconsidered. Two alternative prior distributions that can be used in the Bayesian Approach are proposed; these are an informative, Strict Pareto distribution and a non-informative Jeffreys prior. The performance of these proposals are then compared to existing calibration techniques by using real data.en_ZA
dc.description.abstractAFRIKAANSE OPSOMMING : Die Waarskynlikheid van Wanbetaling is een van die fundamentele parameters in die beraming van kredietrisiko. Wanneer die Waarskynliheid van Wanbetaling beraam word vir ’n portefeulje met lae wanbetaling observasies in die historiese data, vind onderberaming altyd plaas. Dus bestaan daar ’n nood vir kalibrasie tegnieke vir die Waarskynlikhied van Wanbetling vir Lae Wanbetaling Portefeuljes. ’n Verskeidenheid van benaderings word in die literatuur voorgestel, waaronder die Vertroue Gebasseerde Benadering en die Bayesiaanse Benadering die bekendste is. In hierdie studie word die Bayesiaanse Benadering vir die kalibrasie van die Waarskynlikheid van Wanbetaling vir portefeuljes van hoë vlak krediet heroorweeg. Twee alternatiewe apriori verdelings word voorgestel om in die Bayesiaanse Benadering te gebruik. Hierdie apriori verdelings is die streng Pareto verdeling wat ’n inligting-gewende apriori verdeling is en die Jeffreys apriori verdeling wat ’n nie-inligting-gewende apriori verdeling is. Die prestasie van die tegnieke wat voortvloei uit die gebruik van die voorgenoemde twee apriori verdelings word dan vergelyk met bestaande kalibrasie tegnieke deur gebruik te maak van werklike data.af_ZA
dc.format.extentxiv, 153 pages : illustrations (chiefly colour)en_ZA
dc.identifier.urihttp://hdl.handle.net/10019.1/98723
dc.language.isoen_ZAen_ZA
dc.publisherStellenbosch : Stellenbosch Universityen_ZA
dc.rights.holderStellenbosch Universityen_ZA
dc.subjectProbability of default (PD)en_ZA
dc.subjectLow default portfolios (LDP)en_ZA
dc.subjectCredit risken_ZA
dc.subjectFinancial risk managementen_ZA
dc.subjectBayesian statisticsen_ZA
dc.subjectUCTDen_ZA
dc.titleProbability of default calibration for low default portfolios: revisiting the Bayesian approachen_ZA
dc.typeThesisen_ZA
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
venter_probability_2016.pdf
Size:
8.08 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Plain Text
Description: