Refinable vector splines and multi-wavelets with shortest matrix filters

dc.contributor.advisorDe Villiers, Johanen_ZA
dc.contributor.authorRanirina, Dinnaen_ZA
dc.contributor.otherStellenbosch University. Faculty of Science. Dept. of Mathematical Sciences.en_ZA
dc.date.accessioned2018-02-27T12:50:31Z
dc.date.accessioned2018-04-09T07:08:04Z
dc.date.available2018-02-27T12:50:31Z
dc.date.available2018-04-09T07:08:04Z
dc.date.issued2018-03
dc.descriptionThesis (PhD)--Stellenbosch University, 2018.en_ZA
dc.description.abstractENGLISH ABSTRACT : A widely used class of basis functions in signal analysis is obtained from the dilation and integer shifts of a given (compactly supported) wavelet ψ : R → R, by means of which a (scalar) signal can be decomposed into its low frequency and high frequency components. Whereas initially much attention was devoted to orthogonal wavelet decomposition techniques (see for example [1] and [2]), the recent book [3] introduced a more general approach to wavelet construction in which orthogonality is not a requirement and which yielded signi cant advantages in some application areas. An interesting extension is to consider instead, with the view to the decomposition of a vector-valued signal, as presented for the orthogonal case in, for example, [4], a multi-wavelet Ψ : R → R ν . The main focus of this study is to extend the methods in [3], in order to characterize, by means of matrix Laurent polynomial identity systems, a class of multi-wavelets based on general (not necessarily orthogonal) space decomposition. As main building blocks are used re nable vector functions , together with their corresponding matrix re nement sequences. Three di erent classes of re nable vector splines are analysed, with particular focus also on their integer-shift linear independence and stability properties, before explicitly constructing their corresponding spline multi-wavelets. The low-pass and high-pass decomposition matrix lter sequences thus obtained are the shortest possible for the given re nable vector spline, and the spline multi-wavelet is of minimal support for these optimal matrix lters. Moreover, our approach yields explicit formulations for the re nable vector splines, as well as for their corresponding spline multi-wavelets and matrix lter sequences. Computationally e cient algorithms are developed, and examples are calculated, with accompanying illustrating graphs.en_ZA
dc.description.abstractAFRIKAANSE OPSOMMING : 'n Wydgebruikte klas van basisfunksies in seinanalise word verkry uit die dilasie en heeltalskuiwe van 'n gegewe ( kompak-ondersteunde) gol e ψ : R → R, deur middel waarvan 'n (skalaar-) sein in lae en hoë frekwensie komponente ontbind kan word. Waar daar aanvanklik baie aandag bestee is aan ortogonale gol eontbindingstegnieke ( sien byvoorbeeld [1] en [2]), het die onlangse boek [3] 'n meer algemene benadering bekendgestel waarin ortogonaliteit nie 'n vereiste is nie, en wat beduidende voordele in sommige toepassingsgebiede opgelewer het. 'n Interessante uitbreiding is om instede te beskou, met die oog op die ontbinding van 'n vektorsein, soos aangebied vir die ortogonale geval in, byvoorbeeld, [4], 'n multi-gol e Ψ : R → R ν . Die hoo okus van hierdie studie is om die metodes van [3] uit te brei, met die doel om, deur middel van matriks-Laurentpolinome, 'n klas multigol es gebaseer op algemene ( nie noodwendig ortogonale) ruimte-dekomposisie te karakteriseer. As hoofboustene word gebruik verfynbare vektorfunksies, tesame met ooreenkomstige matriks-verfyningsrye. Drie verskillende klasse verfynbare vektorlatfunksies word ge-analiseer, met spesi eke aandag ook op hulle heeltalskuif lineêre onafhanklikheiden stabiliteitseienskappe, voordat hulle ooreenkomstige latfunksie multi-gol es eksplisiet gekonstrueer word. Die lae-deurgang en hoëdeurgang ontbindings matriks lterrye wat sodoende verkry word is die kortste moontlik vir die gegewe verfynbare vektorlatfunksie, en die latfunksie multi-gol e is van minimale steun vir hierdie optimale matriks lters. Ons benadering lewer boonop eksplisiete formulerings vir die verfynbare vektorlatfunksies, asook vir hulle ooreenkomstige latfunksie multi-gol es en matriks lterrye. Berekeningsdoeltre ende algoritmes word ontwikkel, en voorbeelde word uitgewerk, met bygaande illustrerende gra eke.af_ZA
dc.format.extentxiii, 137 pagesen_ZA
dc.identifier.urihttp://hdl.handle.net/10019.1/103739
dc.language.isoen_ZAen_ZA
dc.publisherStellenbosch : Stellenbosch Universityen_ZA
dc.rights.holderStellenbosch Universityen_ZA
dc.subjectFilters (Mathematics)en_ZA
dc.subjectUCTDen_ZA
dc.subjectRefinable vector functionsen_ZA
dc.subjectLinear independenceen_ZA
dc.subjectSpace decomposition (Mathematics)en_ZA
dc.subjectWavelets (Mathematics)en_ZA
dc.titleRefinable vector splines and multi-wavelets with shortest matrix filtersen_ZA
dc.typeThesisen_ZA
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
ranirina_refinable_2018.pdf
Size:
2.66 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Plain Text
Description: