Resonance ionization spectroscopy with time of flight mass spectrometry

dc.contributor.advisorSteenkamp, Christine M.en_ZA
dc.contributor.advisorDu Plessis, Antonen_ZA
dc.contributor.advisorBark, R. A.en_ZA
dc.contributor.authorWaso, Frederick Johnen_ZA
dc.contributor.otherStellenbosch University. Faculty of Science. Dept. of Physics.en_ZA
dc.date.accessioned2019-02-26T08:08:00Z
dc.date.accessioned2019-04-17T08:33:36Z
dc.date.available2019-02-26T08:08:00Z
dc.date.available2019-04-17T08:33:36Z
dc.date.issued2019-04
dc.descriptionThesis (MSc)--Stellenbosch University, 2019.en_ZA
dc.description.abstractENGLISH ABSTRACT : Resonance ionization using laser light is one of the most useful techniques for isolating radioactive isotopes and producing radioactive ion beams at accelerator facilities around the world. The aim of this study was to develop an offline experiment for resonance ionization spectroscopy (RIS) using the nonradioactive element tin. Tin was selected as a test element due to its unique nuclear properties and is an element of interest in various nuclear and astrophysical studies. Various properties of the nucleus can impact the atomic energy levels of the atom. Laser spectroscopy can be used to probe and determine these nuclear properties. RIS is one spectroscopic technique that can be used for this purpose. RIS will be used to produce ions of non-radioactive tin and a time-of-flight mass spectrometer (ToF-MS) will be used to detect these ions. Two separate atom sources have been designed and developed, namely a supersonic jet source and an effusive atomic beam source. Due to administrative delays the ToF-MS could not be implemented in the current study. Simulations using the IBSimu simulation library were performed to study and understand the influence of various experimental parameters in an effort to predict optimal parameters for the experimental setup. The impact of the initial volume and velocity distribution of the ions in the atom sources were studied. From the simulations it was observed that a fine margin exists between a too small or too big initial volume. The resolution decreases as the initial volume increases, but at too small volumes space charge effects start to reduce the resolution of the mass spectra as well. It was observed that ions with large transverse velocity components reduce the resolution of the ToF-MS. Proper beam collimation through the use of skimmers can help reduce the transverse velocity spread and improve the resolution of the instrument. The ToF-MS is fitted with an ion reflector called a reflectron. The reflectron greatly improves the resolution of the ToF-MS and is a crucial component to obtain high resolution spectra. From the results it was observed that a linear potential gradient in the reflectron would be optimal for the resolution of the ToF-MS. The two atom sources were compared, and depending on the aim both sources have distinct advantages. The effusive source will be easier to implement and will be ideal to test the sensitivity and resolution of the ToF-MS. The Doppler broadening of the spectral lines in the effusive beam, however, makes selective excitation and ionization impossible. The supersonic jet limits Doppler broadening and is therefore crucial for selective ionization of Sn. The simulations provided an insight into the influence of various experimental parameters that will facilitate the implementation of the ToF-MS at a later stage.en_ZA
dc.description.abstractAFRIKAANSE OPSOMMING : Resonans ionisasie deur gebruik te maak van laser lig is een van die handigste tegnieke vir die isolasie van radioaktiewe isotope asook vir die produksie van radioaktiewe ioon bundels by versneller fasiliteite wêreldwyd. Die doel van hierdie studie was om ’n eksperiment vir resonans ionisasie spektroskopie (RIS) te ontwikkel deur gebruik te maak van die nie-radioaktiewe element tin. Tin was gekies weens die unieke kern eienskappe van die elemente. Daar is ook ’n groot belangstelling in tin in verskeie kern en astrofisika studies. Verskeie eienskappe van die kern beïnvloed die atomiese energievlakke die atoom. Laser spektroskopie kan gebruik word om hierdie kern eienskappe te bepaal. Een van die spektroskopiese tegnieke wat gebruik kan word is RIS. RIS sal gebruik word om ione van tin te produseer en ’n vlugtyd massa spektrometer gaan gebruik word om die ione waar te neem. Twee verskillende atoom bronne is ontwerp en vervaardig, naamlik ’n supersoniese gas bron en ’n effusie bron. Weens administratiewe vertragings kon die vlugtyd massa spektrometer nie in die tydsverloop van hierdie studie opgestel word nie. Die IBSimu simulasie pakket is gebruik om simulasies te hardloop wat die impak van verskeie eksperimentele kondisies bepaal. Vanuit die simulasies kan voorspellings oor die optimale eksperimentele parameters gemaak word. Die invloed van aanvanklike ioon volume en snelheidsverspreiding in die twee atoom bronne was deur middel van simulasies ondersoek. Vanuit die resultate is daar waargeneem dat daar ’n noue grens is tussen ’n te groot of te klein ioon volume. Die resolusie van die mass spektra neem af, soos die ioon volume toe neem. Wanneer die aanvanklike ioon, egter, te klein word, begin ruimte ladingsdigtheid ’n rol speel. Dit was ook waargeneem dat die transversale snelheids verspreiding die resolusie van die vlugtyd massa spektrometer gaan beïnvloed. Die transversale snelheidsverspreiding kan deur behoorlike kollimering beperk word. Die vlugtyd massa spektrometer bevat ook ’n reflektron wat die resolusie van die instrument aansienlik verbeter. Hierdie komponent is noodsaaklik om hoë resolusie spektra te meet. Vanuit die simulasies is daar waargeneem dat die reflektron optimaal werk vir ’n lineêre potensiaal gradient. Die twee atoom bronne is ook met mekaar vergelyk en afhangend van die doel het elke bron sy eie voordele. Die effusie bron is makliker om te implementeer en daarom is hierdie bron geskik daarvoor om die vlugtyd massa spektrometer te toets in terme van sensitiwiteit asook resolusie. Die Doppler verbreding van spekraallyne vir hierdie bron is egter ’n probleem. Die Doppler verbreding verhoed die selektiewe opwekking en ionisasie van ’n spesifiek isotoop. Die supersoniese gas bron beperk die Doppler verbreding en is noodsaaklik vir die selektiewe opwekking en ionisasie van tin. Die simulasies het waardevolle insig gelewer oor die invloed van verskeie eksperimentele parameters en sal as grondslag dien vir die opstelling van die vlugtyd mass spektrometer in die toekoms.af_ZA
dc.format.extentxiii, 127 pages : illustrations (chiefly colour)en_ZA
dc.identifier.urihttp://hdl.handle.net/10019.1/106191
dc.language.isoen_ZAen_ZA
dc.publisherStellenbosch : Stellenbosch Universityen_ZA
dc.rights.holderStellenbosch Universityen_ZA
dc.subjectTime-of-flight mass spectrometryen_ZA
dc.subjectResonance ionization spectroscopyen_ZA
dc.subjectLaser spectroscopyen_ZA
dc.subjectIsotope selective laser spectroscopyen_ZA
dc.subjectUCTDen_ZA
dc.titleResonance ionization spectroscopy with time of flight mass spectrometryen_ZA
dc.typeThesisen_ZA
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
waso_resonance_2019.pdf
Size:
8.85 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Plain Text
Description: