Use of the N,N-dialkyl-N’-benzoyl(thio)selenoureas as single source precursors for the synthesis of semiconducting quantum dots

dc.contributor.advisorKoch, Klaus R.en_ZA
dc.contributor.authorBruce, Jocelyn Catherineen_ZA
dc.contributor.otherStellenbosch University. Faculty of Science. Dept. of Chemistry and Polymer Science.
dc.date.accessioned2008-11-14T14:26:37Zen_ZA
dc.date.accessioned2010-06-01T08:15:00Z
dc.date.available2008-11-14T14:26:37Zen_ZA
dc.date.available2010-06-01T08:15:00Z
dc.date.issued2008-12en_ZA
dc.descriptionThesis (PhD (Chemistry and Polymer Science))--Stellenbosch University, 2008.
dc.description.abstractThe successful preparation and structural characterization of a number of N,N-dialkyl-N’-benzoyl(thio)selenourea ligands is described; where the intermolecular interactions are characterized by the presence of Resonance Assisted Hydrogen Bonding (RAHB), π- π interactions between neighbouring benzene residues only being evident amongst the longer alkyl chain derivatives. The first structural characterization of an asymmetrically substituted N,N-dialkyl- N’-benzoylselenourea ligand reveals an increased stability of the Z isomer in the solid state, this being reflected by the sulfur analogue. Attempts to synthesise N,N-dicyclohexyl-N’-benzoylselenourea led to the isolation and structural characterization of a novel 1,3,5-oxaselenazine salt and dicyclohexylaminobenzoate. The first structural characterization of a “bipodal” N,N-dialkyl-N’-benzoylselenourea ligand, 3,3,3’,3’-tetrabutyl-1,1’- isophthaloylbis(selenourea), reveals RAHB in the crystal lattice similar to that exhibited by the “monopodal” analogue, N,N-dibutyl-N’-benzoylselenourea. The successful complexation of the N,N-dialkyl-N’-benzoyl(thio)selenourea ligands to a number of different transition metal ions is reported allowing the preparation of several potential single source precursors. Coordination through the O and Se/S donor atoms to Pd(II) results in the formation of square planar metal complexes, with a cis conformation, several of which could be structurally characterized. In particular, the first structural elucidation of an asymmetrically substituted N,N-dialkyl-N’-benzoylselenourea metal complex, cis-bis(N-benzyl-N-methyl-N’- benzoylselenoureato)palladium(II) indicates the increased stability of the EZ isomer in the solid state. Structural elucidation of the novel (N,N-diphenyl-N’-benzoylselenoureato)cadmium(II) reveals a bimetallic complex in the solid state, where the expected 2:1 ligand : metal ratio is maintained, and the two Cd(II) centres are 5 and 6 coordinated, with O and Se donor atoms. Multinuclear Nuclear Magnetic Resonance (NMR) Spectroscopy has been employed in the thorough characterisation of the potential single source precursors, 77Se NMR spectroscopy indicating a decreased shielding of the 77Se nucleus as the “hardness” of the central metal ion increases i.e. Pd(II) > Zn(II) > Cd(II). Use of 113Cd NMR spectroscopy indicates the preferential binding of N,N-diethyl-N’- benzoylselenourea to Cd(II) over that of its sulfur analogue, and initial studies suggest a form of chelate metathesis taking place in solution. 31P NMR spectroscopy is used to gain insight into the formation of cis-bis(N,N-diethyl-N’- benzoylselenoureato)Pt(II). Thermolysis of (N,N-diethyl-N’-benzoylselenoureato)cadmium(II) and its sulfur analogue led to the successful synthesis of CdSe and CdS quantum dots respectively, where thermolysis over a range of temperatures allows a degree of size control over the resulting nanoparticles. The effect of precursor alkyl chain length on nanoparticle morphology was investigated for both the N,N-dialkyl-N’-benzoylthio- and –selenoureas. A correlation between the two for the (N,N-dialkyl-N’-benzoylselenoureato)Cd(II) complexes is described and possible growth mechanisms are discussed. Preliminary investigations into the use of other N,N-dialkyl-N’-benzoyl(thio)selenourea metal complexes as single source precursors reveal that both (N,N-diethyl-N’-benzoylselenoureato)Zn(II) and its sulfur analogue show potential as single source precursors for the formation of ZnO and ZnS nanoparticles respectively. Initial studies into the use of N,N-dialkyl-N’-benzoyl(thio)selenourea metal complexes as single source precursors for the synthesis of core-shell nanoparticles is briefly described. The Aerosol Assisted Chemical Vapour Deposition (AACVD) of several N,N-dialkyl-N’-benzoyl(thio)selenourea metal complexes is reported, where both (N,N-diethyl-N’-benzoylselenoureato)Cd(II) and its sulfur analogue allow the deposition of crystalline CdSe and CdS respectively. The AACVD of (N,N-diethyl-N’- benzoylselenoureato)Zn(II) leads to the deposition of crystalline ZnSe, ZnS being deposited by (N,N-diethyl-N’-benzoylthioureato)Zn(II). The deposition of heazelwoodite (Ni3S2) with varying morphologies results from the AACVD of cis-bis(N,N-diethyl-N’-benzoylthioureato)Ni(II). Thermal annealing of the amorphous material deposited by the AACVD of cis-bis(N,N-diethyl-N’-benzoylthioureato)Pd(II), allows the formation of highly crystalline palladium. The deposition of metallic platinum using cis-bis(N,N-diethyl-N’-benzoylthioureato)Pt(II) is described as well as the deposition of crystalline Pd17Se15 from cis-bis(N,N-diethyl-N’-benzoylselenoureato)Pd(II). This, to the best of our knowledge, is the first time that AACVD has been performed, using the N,N-dialkyl-N’- benzoyl(thio)selenourea metal complexes as single source precursors, in addition, we believe it to be the first time that palladium selenide has been deposited using the AACVD technique.en_ZA
dc.identifier.urihttp://hdl.handle.net/10019.1/1205
dc.language.isoen_ZAen_ZA
dc.publisherStellenbosch : Stellenbosch University
dc.rights.holderStellenbosch University
dc.subjectNanoparticlesen_ZA
dc.subjectN,N-dialkyl-N'-aryl(thio)selenoureasen_ZA
dc.subjectSingle source precursorsen_ZA
dc.subjectChemical vapour depositionen_ZA
dc.subjectDissertations -- Chemistryen_ZA
dc.subjectTheses -- Chemistryen_ZA
dc.titleUse of the N,N-dialkyl-N’-benzoyl(thio)selenoureas as single source precursors for the synthesis of semiconducting quantum dotsen_ZA
dc.typeThesisen_ZA
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
bruce_use_2008.pdf
Size:
14.87 MB
Format:
Adobe Portable Document Format
Description: