An artificial intelligence approach for biomass devolatilisation in an industrial CFD model with advanced turbulence-chemistry interaction
dc.contributor.advisor | Meyer, Chris J. | en_ZA |
dc.contributor.advisor | Laubscher, Ryno | en_ZA |
dc.contributor.author | Du Toit, Philip C. | en_ZA |
dc.contributor.other | Stellenbosch University. Faculty of Engineering. Dept. of Mechanical and Mechatronic Engineering. | en_ZA |
dc.date.accessioned | 2018-02-28T13:04:42Z | |
dc.date.accessioned | 2018-04-09T07:10:25Z | |
dc.date.available | 2018-02-28T13:04:42Z | |
dc.date.available | 2018-04-09T07:10:25Z | |
dc.date.issued | 2018-03 | |
dc.description | Thesis (PhD)--Stellenbosch University, 2018. | en_ZA |
dc.description.abstract | ENGLISH SUMMARY: The ground work to include more detailed chemistry than global approaches in a combustion simulation was completed. A reduced-order model of the Biomass Chemical Percolation Devolatilisation model, ANN-Bio-CPD, was developed and implemented with artifcial neural networks in order to achieve ease of execution and computational cost reduction with regard to an industrial computational fluids dynamics application. ANN-Bio-CPD was validated with wire-mesh reactor and drop-tube furnace experiments from literature. Subsequently, the Eddy Dissipation Concept (EDC) turbulence-chemistry interaction model was implemented and validated with ANN-Bio-CPD in a bagasse- fired boiler simulation. The EDC model constants were adjusted to achieve the correct temperature and intermediate species results in combination with a two-step global reaction mechanism. | en_ZA |
dc.description.abstract | AFRIKAANSE OPSOMMING: 'n Kunsmatige intelligensiebenadering vir biomassa-devolatilisering in 'n industriële CFD-model met gevorderde turbulensie-chemie-interaksie. Die basis om meer gedetailleerde chemie as globale benaderings in 'n verbrandingsimulasie in te sluit, is voltooi. 'n Verminderde-orde model van die Biomassa Chemiese Perkolasie Devolatilisering model, ANN-Bio-CPD, is ontwikkel en met kunsmatige neurale netwerke geïmplementeer om uitvoering te vergemaklik en berekeningskostes te verminder rakende die toepassing van numeriese vloeidinamika op 'n industriële skaal. ANN-Bio-CPD is gevalideer met die eksperimente van draad-maas reaktors- en valbuis-oonde uit die literatuur. Vervolgens is die "Eddy Dissipation Concept"(EDC) turbulensie-chemie interaksie model geïmplementeer en gevalideer met ANN-Bio-CPD in 'n bagasse-gestookte ketelsimulasie. Die EDCmodelkonstantes is aangepas om die korrekte temperatuur en intermediêre spesies resultate te bereik in kombinasie met 'n tweestap globale reaksie meganisme. | af_ZA |
dc.format.extent | xix, 141 pages ; illustrations | en_ZA |
dc.identifier.uri | http://hdl.handle.net/10019.1/103817 | |
dc.language.iso | en_ZA | en_ZA |
dc.publisher | Stellenbosch : Stellenbosch University | en_ZA |
dc.rights.holder | Stellenbosch University | en_ZA |
dc.subject | Eddy Dissipation Concept | en_ZA |
dc.subject | Combustion | en_ZA |
dc.subject | Artificial intelligence -- Engineering applications | en_ZA |
dc.subject | Biomass devolatilisation | en_ZA |
dc.subject | Neural networks (Computer science) | en_ZA |
dc.subject | UCTD | |
dc.title | An artificial intelligence approach for biomass devolatilisation in an industrial CFD model with advanced turbulence-chemistry interaction | en_ZA |
dc.type | Thesis | en_ZA |