Fault pattern recognition in simulated furnace data

dc.contributor.advisorLouw, Tobias M.en_ZA
dc.contributor.advisorBradshaw, S. M.en_ZA
dc.contributor.advisorAuret, Lidiaen_ZA
dc.contributor.authorTheunissen, Carl Daniel
dc.contributor.otherStellenbosch University. Faculty of Engineering. Dept. of Process Engineering.en_ZA
dc.date.accessioned2021-03-08T11:10:59Z
dc.date.accessioned2021-04-21T14:39:32Z
dc.date.available2021-03-08T11:10:59Z
dc.date.available2021-04-21T14:39:32Z
dc.date.issued2021-03
dc.descriptionThesis (Meng)--Stellenbosch University, 2021.en_ZA
dc.description.abstractENGLISH ABSTRACT: Modern submerged arc furnaces are plagued by blowbacks; hazardous occurrences where hot, toxic furnace freeboard gases are blown into the environment. While common occurrences, their causes are currently unknown, hence they cannot be predicted with mechanistic models. Data-driven models use data recorded from modern processes, like submerged arc furnaces, to recognize specific process conditions. This project aimed to identify and compare fault pattern recognition models that could be used for detecting and recognizing blowback-preceding conditions. A simple submerged arc furnace model that emulates blowbacks was developed with which to generate large volumes of data for model comparison. This submerged arc furnace model was developed from mass- and energy balances over distinct furnace zones, and yielded a large dataset with dynamic- and nonlinear characteristics. This dataset contained observations from multiple distinct operating modes, and was deemed suitable for fault pattern recognition model evaluation. A semi-supervised learning approach was selected as most suitable for recognizing blowback preceding conditions. Semi-supervised fault pattern recognition models are trained on a set of only blowback-preceding observations; this fits the typical constraints imposed by industrial datasets, where data is poorly defined and only a few observation of the target fault are labelled as such. Principal component analysis (PCA), kernel PCA and input-reconstructing neural networks called auto-encoders are established semi-supervised pattern recognition methods. One-dimensional convolutional auto-encoders are neural network architectures that effectively compress multivariate time series, but their application to on-line fault pattern recognition is relatively novel. This work applied these methods to on-line fault pattern recognition for blowback prediction, and presented algorithms for applying these methods for semi-supervised fault pattern recognition tasks. Feature engineering has the largest impact on fault pattern recognition performance, therefore feature engineering techniques were applied as part of an overall approach to data-driven fault pattern recognition. The investigation into the above fault pattern recognition models showed that kernel PCA’s superior performance over standard PCA is limited to smaller datasets, and that large datasets must be compressed significantly before kernel PCA can be applied. Consequently this investigation found linear PCA to be superior to nonlinear kernel PCA for modelling large datasets. Both auto-encoders and the developed convolutional auto-encoders outperformed linear PCA modelling, highlighting the improved fault pattern recognition capabilities of nonlinear models. This investigation found that one-dimensional convolutional auto-encoders were far more effective than the other presented models when applied to raw multivariate time series data, confirming that one-dimensional convolutional auto-encoders are effective at processing time series. However, the best performance was observed for auto-encoders models when applied to feature engineered data. This highlighted the guiding role that feature engineering should have in developing and implementing fault pattern recognition models.en_ZA
dc.description.abstractAFRIKAANSE OPSOMMING: Moderne onderdompelde boogoonde word gekwel deur terugploffings; gevaarlike gevalle waar warm, toksiese oondvryboordgasse in die omgewing geblaas word. Al is dit algemene verskynsels, is hul oorsake tans onbekend, en daarom kan hulle nie voorspel word deur meganistiese modelle nie. Datagedrewe modelle gebruik data wat opgeneem is van moderne prosesse, soos onderdompelde boogoonde, om spesifieke proseskondisies te herken. Hierdie projek het beoog om foutpatroonherkenningsmodelle te identifiseer en vergelyk om kondisies voor terugploffings op te spoor en te herken. ’n Eenvoudige onderdompelde boogoondmodel wat terugploffings naboots is ontwikkel waarmee groot volumes data vir modelvergelyking gegenereer kon word. Hierdie onderdompelde boogoondmodel is ontwikkel vanuit massa- en energiebalanse oor aparte oondsones, en het ’n groot datastel met dinamiese en nie-liniêre karakteristieke gelewer. Hierdie datastel het waarnemings van verskeie duidelike bedryfsmodus bevat, en is gepas geag vir foutpatroonherkenningsmodel se evaluasie. ’n Semi-toesighoudende leer benadering is gekies as mees gepas vir herkenning van terugploffings se voorafgaande kondisies. Semi-toesighoudende foutpatroonherkenningmodelle is opgelei uit ’n stel van slegs terugploffing-voorafgaande waarnemings; hierdie pas die tipiese beperkinge wat industriële datastelle oplê, waar data swak gedefinieer word en slegs ’n paar waarnemings van die teikenfout so benoem word. Hoofkomponent analise (PCA), kern PCA en inset-rekonstrueering neurale netwerke wat outo-enkodeerders genoem word, is gevestigde semi-toesighoudende patroonherkenningsmetodes. Een-dimensionele konvolusionele outo-enkodeerders is ʼn neurale netwerk argitektuur wat meervariaat tydreekse effektief kan kompres, maar hulle toepassing op op-lyn foutherkenning is relatief nuut. Hierdie werk het hierdie metodes op op-lyn foutpatroonherkenning vir terugploffing voorspelling toegepas, en algoritmes voorgestel om hierdie metodes vir semi-toesighoudende foutpatroonherkenningtake toe te pas. Kenmerkingenieurswese het die grootste impak op foutpatroonherkenning se doeltreffendheid, en daarom is kenmerkingenieurswesetegnieke gebruik as deel van ’n algehele benadering tot datagedrewe foutpatroonherkenning. Die ondersoek in die bogenoemde foutpatroonherkenningmodelle het gewys dat kern PCA se superieure doeltreffendheid oor standaard PCA beperk is tot kleiner datastelle, en dat groot datastelle beduidend kompres moet word voordat kern PCA toegepas kan word. Vervolgens het hierdie ondersoek gevind dat liniêre PCA superieur is oor nie-liniêre kern PCA vir modellering van groot datastelle. Beide outo-enkodeerders en die ontwikkelde konvolusionele outo-enkodeerders het liniêre PCA-modellering oortref, wat die verbeterde foutpatroonherkenningkapasiteite van nie-liniêre modelle beklemtoon. Hierdie ondersoek het gevind dat een-dimensionele konvolusionele outo-enkodeerders veel meer effektief is as die ander voorgestelde modelle wanneer dit toegepas word op rou meervariaat tydreeksdata, wat bevestig dat een-dimensionele konvolusionele outo-enkodeerders effektief is met prosessering van tydreekse. Die beste presteerder was egter waargeneem vir outo-enkodeerdermodelle toe dit op kenmerkingenieurswese toegepas is. Hierdie het die leidende rol wat kenmerkingenieurswese moet speel in ontwikkeling en implementering van foutpatroonherkenningmodelle, beklemtoon.af_ZA
dc.description.versionMastersen_ZA
dc.format.extentxi, 137 pages : illustrationsen_ZA
dc.identifier.urihttp://hdl.handle.net/10019.1/110083
dc.language.isoen_ZAen_ZA
dc.publisherStellenbosch : Stellenbosch Universityen_ZA
dc.rights.holderStellenbosch Universityen_ZA
dc.subjectUCTD
dc.subjectPattern recognition systemsen_ZA
dc.subjectSubmerged arc furnaces -- Blowback -- Predictionsen_ZA
dc.subjectPrincipal components analysisen_ZA
dc.subjectKernel functionsen_ZA
dc.subjectFeature engineeringen_ZA
dc.subjectMachine learningen_ZA
dc.subjectFailure analysis (Engineering) -- Data processingen_ZA
dc.titleFault pattern recognition in simulated furnace dataen_ZA
dc.typeThesisen_ZA
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
theunissen_fault_2021.pdf
Size:
4.43 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Plain Text
Description: