Hofstadter point spectrum trace and the almost Mathieu operator

dc.contributor.authorOuvry, Stephaneen_ZA
dc.contributor.authorWagner, Stephanen_ZA
dc.contributor.authorWu, Shuangen_ZA
dc.date.accessioned2019-10-09T09:04:19Z
dc.date.available2019-10-09T09:04:19Z
dc.date.issued2018
dc.descriptionCITATION: Ouvry, S., Wagner, S. & Wu, S. 2018. Hofstadter point spectrum trace and the almost Mathieu operator. Hofstadter point spectrum trace and the almost Mathieu operator, 59:073504, doi:10.1063/1.5020147.en_ZA
dc.descriptionThe original publication is available at http://aip.scitation.org/journal/jmpen_ZA
dc.description.abstractWe consider point spectrum traces in the Hofstadter model. We show how to recover the full quantum Hofstadter trace by integrating these point spectrum traces with the appropriate free density of states on the lattice. This construction is then generalized to the almost Mathieu operator and its nth moments which can be expressed in terms of generalized Kreft coefficients.en_ZA
dc.description.urihttps://aip.scitation.org/doi/10.1063/1.5020147
dc.description.versionPublisher's versionen_ZA
dc.format.extent19 pages : illustrations (some colour)en_ZA
dc.identifier.citationOuvry, S., Wagner, S. & Wu, S. 2018. Hofstadter point spectrum trace and the almost Mathieu operator. Hofstadter point spectrum trace and the almost Mathieu operator, 59:073504, doi:10.1063/1.5020147en_ZA
dc.identifier.issn1089-7658 (online)
dc.identifier.issn0022-2488 (print)
dc.identifier.otherdoi:10.1063/1.5020147
dc.identifier.urihttp://hdl.handle.net/10019.1/106608
dc.language.isoen_ZAen_ZA
dc.publisherAIPen_ZA
dc.rights.holderAuthors retain copyrighten_ZA
dc.subjectLattice (Mathematics)en_ZA
dc.subjectHofstadter modelen_ZA
dc.subjectMathieu operatoren_ZA
dc.subjectKreft coefficientsen_ZA
dc.subjectSchrödinger equationen_ZA
dc.subjectSpectrum traceen_ZA
dc.titleHofstadter point spectrum trace and the almost Mathieu operatoren_ZA
dc.typeArticleen_ZA
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
ouvry_hofstadter_2018.pdf
Size:
524.91 KB
Format:
Adobe Portable Document Format
Description:
Download article
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: