Development of multi-step biorefinery schemes for the production of nanocellulose and high value-added bioproducts from mango seed

Date
2022-04
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
ENGLISH ABSTRACT: Due to environmental and health concerns associated with non-renewable and synthetic-based packaging materials, there is an upward demand for bioproducts from renewable sources, particularly for food packaging. Nanocellulose is one such bioproduct and is generally produced from woody biomass due to its fibrous nature, however, woody biomass is in high demand. Mango (Mangifera Indica L.) seed is a major lignocellulosic waste from mango fruit processing, whose management is limited to disposal by incineration, burning, or landfilling with no current commercial use, resulting in environmental and economic burdens such as green-house gas emissions and land use concerns. However, mango seed has potentials for various bioproduct exploits including nanocellulose, due to the high cellulose content comparable to woody biomass and valuable co-products (hemicellulose, starch, polyphenols, and lignin). Thus, compared to the woody biomass, biorefinery exploits for the mango seed focused on the comprehensive fractionation and conversion into bioproducts and the nanocellulose offers additional advantages of enhancing the economic exploits through the additional product recoveries. However, the conventional nanocellulose production processes involving controlled sulphuric acid treatment of bleached cellulose-rich Kraft pulp, degrades the valuable components of polyphenols, lignin, and hemicellulose, and the sulphuric acid applied lowers the thermal stability of the nanocellulose thereby limiting its application in thermo-processing. In addition, due to the different biomass components responding differently to process conditions and the specificity of optimal extraction conditions for each product, challenges of low product yields and qualities could be envisaged for non-optimized extraction processes. Thus, establishing appropriate and optimal multi-step fractionation/conversion processes for the multi-product biorefinery schemes is essential for the sustainable recovery of the bioproducts. Therefore, this study aimed at developing multi-step biorefinery schemes for fractionating mango seed into high-value products such as hemicellulose, lignin, starch, cellulose, and polyphenols. Furthermore, produce nanocellulose from the cellulose fibers using organic acids and compare with the classical sulphuric acid-based process. Additionally, evaluate the potential of the hemicellulose extract as a material for biocomposite film development for food packaging without external additives. A multi-step biorefinery process consisting of sequential organosolv extraction (OE) [ethanol concentration (50–80% v/v), temperatures (20–60°C)], enzymatic hydrolysis (EH) [Termamyl®SC; (300 mL of Termamyl SC per ton starch in MSK) and Saczyme®Plus; (800 ml Saczyme Plus/ ton starch in MSK)] and alkaline pretreatment (AP) [(40–90 °C), NaOH concentrations (1–2 M), time (2–4 h)] for the recovery of polyphenols, starch, and bioactive hemicellulose from mango seed kernel (MSK) while minimizing the degradation of cellulose and lignin in the residual solids was developed. In addition, a multi-step sequential AP and rotor-stator high shear homogenization-assisted organosolv (HSHO) [ethanol concentration (50–70%), temperature (130–150 °C), homogenizing time (10–20 min)] process to recover hemicellulose (xylan/xyloglucan), lignin and cellulose-rich fibers from mango seed husk (MSH) was developed. The feasibility of the MSH hemicellulose extract to form self-supporting biocomposite film without external additives as applicable with xylan-based films was assessed. In addition, the feasibility of producing nanocellulose from the cellulose-rich fibers obtained from the multi-step process via optimized non-catalyzed formic acid-based treatment was investigated. Effect of an alternative CNC production process involving acetic acid treatment [pulp-to-acid ratio (1:20–1:40), reaction time (6–12 h)] on the preparation and acetylation of CNCs from the cellulose-rich fibers was also evaluated versus the combined acetic acid plus high shear homogenization and the classical sulphuric acid-based process. Results from the optimized multi-step sequential OE, EH, and AP process route for the fractionation of MSK led to the recovery of polyphenols, starch, bioactive hemicellulose, and solid residue enriched in cellulose and lignin. The optimized OE process (64.99%w/w ethanol, 54.18 ºC) resulted in an extract with total polyphenol content (TPC) and antioxidant activity (AA) of 95.21 mg GAE/g and 84.69% respectively with >90% cellulose, lignin, starch, and hemicellulose retention in the residual solids. The EH of the OE process resulted in >90% starch removal (as simple sugars). The optimized conditions for the subsequent AP of the destarched OE solids resulted in >50% hemicellulose recovery with 34.96 mg GAE/g TPC and 55.05% AA, and solids having 88.3% and 91.12% cellulose and lignin retention respectively that could be further valorized to increase the product range from the MSK. At the optimized AP process conditions (1.92 M NaOH, 86.0 °C, and 3.84 h), the recovered MSH hemicellulose extract possess suitable properties for thermally stable biocomposite film for food packaging. Subsequently, at the optimized HSHO pretreatment conditions (60% ethanol, 148.41 ºC, 15 min homogenization), over 70% lignin dissolution with high purity (>95%), 3247 g/mol molecular weight (Mw), and 298 ºC maximum thermal degradation temperature (Tmax) were obtained based on the AP MSH. The recovered solids post-HSHO process had >77% cellulose with fibers separated into individual strands of diameters <1 to 10 μm, and >55% crystallinity suitable for CNC production. Thus, the multi-step sequential AP and HSHO biorefinery route is promising for multi-products recovery in addition to the cellulose-rich material for CNC production.
AFRIKAANS OPSOMMING: As gevolg van omgewings- en gesondheidskommer geassosieer met nie-herwinbare en sinteties-gebaseerde verpakkingsmateriaal, is daar ’n opwaartse aanvraag vir bioprodukte uit herwinbare bronne, veral vir voedselverpakking. Nanosellulose is só ’n bioproduk en word oor die algemeen geproduseer uit houtagtige biomassa as gevolg van sy veselagtige natuur. Houtagtige biomassa is egter in hoë aanvraag. Mangosaad (Mangifera Indica L.) is ’n groot lignosellulose-afval van mangovrugprosessering, wat se bestuur beperk is tot verwydering deur verassing, verbranding, of landopvulling met huidig geen kommersiële gebruik nie, wat omgewings- en ekonomiese laste soos groenhuisgasemissie en landgebruik bekommernisse tot gevolg het. Mangosaad het egter die potensiaal vir verskeie bioprodukontginning insluitend nanosellulose, as gevolg van die hoë sellulose-inhoud in vergelyking met houtagtige biomassa en waardevolle ko-produkte (hemisellulose, stysel, polifenole en lignien). Dus, in vergelyking met die houtagtige biomassa, het die bioraffinadery se ontginning van die mangosaad gefokus op die omvattende fraksionering en omsetting in bioprodukte en die nanosellulose bied addisionele ekonomiese ontginning deur addisionele produkherwinning. Die konvensionele nanoselluloseproduksieproses wat die beheerde swawelsuurbehandeling van gebleikte sellulose-ryke Kraft-pulp insluit, het egter die waardevolle komponente van polifenole, lignien en hemisellulose gedegradeer, en die swawelsuur toegepas het die termiese stabiliteit van die nanosellulose verlaag, daardeur sy toepassing in termoprosessering beperk. Daarby, as gevolg van die verskillende biomassakomponente wat verskillend op die proseskondisies reageer en die spesifisiteit van optimale ekstraksiekondisies vir elke produk, is uitdagings van lae produkopbrengste en kwaliteit voorsien vir nie-geoptimeerde ekstraksieprosesse. Dus, is dit essensieel om die gepaste en optimale multi-stap fraksionering/omsettingprosesse vir die multi-produk bioraffinaderyskema vas te stel, vir die volhoubare herwinning van die bioprodukte. Daarom het hierdie studie beoog om multi-stap bioraffinaderyskemas vir fraksionering van mangosaad in hoë-waarde produkte soos hemisellulose, lignien, stysel, sellulose en polifenole, te ontwikkel. Verder het die studie beoog om nanosellulose uit sellulose vesels te produseer deur organiese sure te gebruik en te vergelyk met die klassieke swawelsuur-gebaseerde proses. Daarby het dit die potensiaal van die hemisellulose ekstraksie as ’n materiaal vir biosaamgestelde film geëvalueer vir voedselverpakking sonder eksterne bymiddels. ’n Multi-stap bioraffinaderyproses is ontwikkel wat bestaan uit sekwensiële organosolv ekstraksie (OE) [etanolkonsentrasie (50–80% v/v), temperatuur (20–60 °C)], ensimatiese hidrolise (EH) [Termamyl®SC; (300 mL Termamyl SC per ton stysel in MSK) en Saczyme®Plus; (800 ml Saczyme Plus/ton stysel in MSK)] en alkaliese voorbehandeling (AP) [40–90 °C), NaOH-konsentrasies (1–2 M), tyd (2–4 h)] vir die herwinning van polifenole, stysel en bio-aktiewe hemisellulose uit mangosaadpit (MSK) terwyl die degradasie van sellulose en lignien in die residuele vaste stowwe geminimeer is. Daarby is ’n multi-stap sekwensiële AP en rotor-stator hoë skuifkrag homogenisering geassisteerde organosolv (HSHO) [etanolkonsentrasie (50–70%), temperatuur (130–150 °C), homogeniseringstyd (10–20 min)] proses ontwikkel om hemisellulose (xilan/xiloglukaan), lignien en sellulose-ryke vesels van mangosaadpeul (MSH) te herwin. Die uitvoerbaarheid van die MSH hemisellulose ekstrak om self-ondersteunende biosaamgestelde film sonder eksterne bymiddels te vorm, soos toepaslik met xilaan-gebaseerde films, is geassesseer. Daarby is die uitvoerbaarheid van nanoselluloseproduksie uit die sellulose-ryke vesels verkry uit die multi-stap proses via nie-gekataliseerde metanoësuur-gebaseerde behandeling wat geoptimeer is, ondersoek. Die effek van ’n alternatiewe CNC-produksieproses wat asynsuurbehandeling insluit [pulp-tot-suur-ratio (1:20–1:40), reaksietyd (6–12 h)] op die voorbereiding en asetilasie van CNCs van die sellulose-ryke vesels is ook geëvalueer teenoor die gekombineerde asynsuur plus hoë skuifkrag homogenisering en die klassieke swawelsuur-gebaseerde proses. Resultate van die geoptimeerde multi-stap sekwensiële OE-, EH- en AP-prosesroete vir die fraksionering van MSK het tot die herwinning van polifenole, stysel, bio-aktiewe hemisellulose en lignien gelei. Die OE-proses wat geöptimeer is (64.99% w/w etanol, 54.18 °C) het ’n ekstrak tot gevolg gehad met totale polifenole inhoud (TPC) en antioksidant aktiwiteit (AA) van 95.21 mg GAE/g en 84.69% onderskeidelik, met >90% sellulose, lignien, stysel en hemisellulose retensie in die residuele vaste stowwe. Die EH van die OE-proses het >90% styselverwydering tot gevolg gehad (as eenvoudige suikers). Die geöptimeerde kondisies vir die daaropvolgende AP van die ontstyselde OE-vaste stowwe het tot >50% hemisellulose herwinning gelei met 34.96 mg GAE/g TPC en 55.05% AA, en vaste stowwe wat 88.3% en 91.12% sellulose en lignien retensie onderskeidelik het, wat verder gevaloriseer kan word om die produkbestek van die MSK te verhoog. By die geöptimeerde AP-proseskondisies (1.92 M NaOH, 86.0 °C, en 3.84 h), het die herwinde MSH-hemisellulose-ekstrak gepaste eienskappe vir termies stabiele biosaamgestelde film vir voedselverpakking. Daaropvolgens, by die geöptimeerde HSHO voorbehandelingkondisies (60% etanol, 148.41 °C, 15 min homogenisering), is meer as 70% lignienoplossing met hoë suiwerheid (>95%), 3247 g/mol molekulêre gewig (Mw), en 298 °C maksimum termiese degradasie temperature (Tmax) verkry gebaseer op die AP MSH. Die herwinde vaste stowwe na-HSHO-proses het >75% sellulose met vesels geskei in individuele stringe van deursnit <1 tot 10 μm, en >55% kristalliniteit gehad, gepas vir CNC-produksie. Dus, die multi-stap sekwensiële AP- en HSHO-bioraffinaderyroete is belowend vir multi-produkherwinning buiten die sellulose-ryke materiaal vir CNC-produksie.
Description
Thesis (PhD)--Stellenbosch University, 2022.
Keywords
Biorefinery, Biological products, Biomass energy, Biomass conversion, UCTD
Citation