Comparison and cost analysis of promising hydrogen storage technologies for long term energy storage in South Africa

Date
2021-03
Journal Title
Journal ISSN
Volume Title
Publisher
Stellenbosch : Stellenbosch University
Abstract
ENGLISH ABSTRACT: Globally, a shift away from dispatchable fossil fuel-based energy to less-polluting variable renewable energy is gaining momentum. With this comes an increasing need for energy storage to manage the variability of renewable energy. A hydrogen power-to-gas energy storage system is a candidate to fill the need for one type of storage – long-term energy storage – which is energy storage with a duration of more than a day. This energy storage consists of an electrolyser (uses electricity to produce hydrogen from water), a hydrogen storage system and an electricity generator. Such hydrogen power-to-gas energy storage systems may need to store a large amount of hydrogen. In literature, this aspect of the system – the hydrogen storage system – is often overlooked with the assumption that it is trivial. However, hydrogen storage has significant limitations and its economics for energy storage are unclear. To shed light onto hydrogen storage, this research reviews and compares the technical and economic aspects of prominent hydrogen storage technologies. The levelized cost of hydrogen storage was used to quantify the cost of different technologies in a wide range of configurations. Technologies considered were compressed hydrogen (with varying pressure vessels), liquid hydrogen and liquid organic hydrogen carrier (LOHC) based hydrogen storage. The results clearly showed that compressed hydrogen using a salt cavern as the pressure vessel has the lowest LCOS across all technologies. However, geological requirements significantly limit this type of hydrogen storage. Above-ground pressure vessels, on the other hand, proved to be very expensive while lined rock cavern storage proved to occupy a middle ground in terms of cost. This is unlike liquid hydrogen, which is relatively uneconomic technology and it has a low roundtrip efficiency and high technical complexity. However, there is scope for a reduction in capital cost and efficiency increases. Finally, the costs of LOHC based storage with external dehydrogenation heat proved to be similar to lined rock caverns without the additional complexity or 5 year construction time. Nonetheless, the need for large amounts of dehydrogenation heat may limit the deployment of this technology. This heat can be sourced as waste heat from the electricity generator (high-temperature fuel cell or hydrogen gas turbine generator) or some of the stored hydrogen can be directly combusted. The former is problematic due to low technological readiness of such electricity generators while the later is economically unattractive. A secondary objective of this research was to examine the need and viability of hydrogen power-to-gas energy storage within South Africa’s electricity system. The findings were that the least expensive form of hydrogen storage – compressed hydrogen in salt caverns – cannot be implement in South Africa due to geological limitations. Furthermore, there is no need for hydrogen power-to-gas energy storage in South Africa until renewable energy penetration levels are closer to 80 %. Storage of hydrogen for export purposes will most likely be determined by market preferences.
AFRIKAANSE OPSOMMING: ’n Wˆereldwye verskuiwing van energie bronne gebaseer op fossielbrandstof na minder besoedelende veranderlike hernubare energiebronne vind toenemend plaas. Hiermee kom ’n toenemende behoefte aan energiestoor om die veranderlikheid van hernubare energie te bestuur. ’n Waterstof krag-tot-gas-energiestoorstelsel is ’n kandidaat om die behoefte aan een soort energiestoor te voorsien – langtermyn-energiestoor – wat energie stoor is met ’n duur van meer as ’n dag. Hierdie energiestoor bestaan uit ’n elektroliseerder (gebruik elektrisiteit om waterstof vanaf water te skei), ’n waterstofstoor en ’n kragopwekker. Sulke waterstof krag-tot-gas-energiestoorstelsel moet dalk baie waterstof stoor. In die literatuur word hierdie aspek van die stelsel – die waterstofopstoorstelsel – dikwels ge¨ıgnoreer, met die aanname dat dit triviaal is. Waterstofopberging het egter beduidende beperkings en die ekonomie daarvan vir energieopberging is onduidelik. Om lig op waterstof stoor te werp, word die tegniese en ekonomiese aspekte van prominente waterstofstoortegnologie¨e ondersoek en vergelyk. Die gelyke koste van waterstofopberging is gebruik om die koste van verskillende tegnologie¨e in ’n wye verskeidenheid konfigurasies te kwantifiseer. Tegnologiee¨ wat oorweeg is, was verdigte waterstofstoor (met verskillende drukvate), vloeibare waterstof en likiede organiese wasterstof draers (LOHC). Die resultate het duidelik getoon dat verdigte waterstof met behulp van ’n sout kaverne as die drukvat die laagste LCOS het van alle tegnologie¨e. Geologiese vereistes beperk egter hierdie soort waterstofstoor aansienlik. Drukvate bo-grond, blyk baie duur te wees, terwyl die stoor van waterstof in rots kaverne ’n middelgrond bevat wat koste betref. Dit is anders as vloeibare waterstof, wat ‘n relatief onekonomiese tegnologie is, en dit het ’n lae ‘roundtrip’ doeltreffendheid en ’n ho¨e tegniese kompleksiteit. Daar is potensiaal vir ’n vermindering in kapitaalkoste en verhoog van die doeltreffendheid. Ten slotte lyk die koste van LOHC-gebaseerde berging met eksterne dehidrogeneringshitte soortgelyk aan rots kaverne sonder die ekstra kompleksiteit of konstruksietyd van 5 jaar. Nietemin kan die behoefte aan groot hoeveelhede dehidrogeneringshitte die gebruik van hierdie tegnologie beperk. Hierdie hitte kan verkry word as afvalhitte van die kragopwekker (ho¨e temperatuur brandstofsel of waterstofgas turbine kragopwekker) of van die gestoorde waterstof kan direk verbrand word. Die eersgenoemde is problematies weens die lae tegnologiese gereedheid van die nodige kragopwekkers, terwyl die laaste ekonomies onaantreklik is. ’n Sekondˆere doelwit van hierdie navorsing was om die behoefte en lewensvatbaarheid van die stoor van waterstof-krag-tot-gas-energie in die SuidAfrikaanse elektrisiteitstelsel te ondersoek. Die bevindinge was dat die goedkoopste vorm van waterstofopberging – verdigte waterstof in soutgrotte - weens geologiese beperkings nie in Suid-Afrika ge¨ımplementeer kan word nie. Verder is waterstofkrag-na-gas-energieopslag nie nodige voordat die penetrasievlakke van hernubare energie nader aan 80 % is nie. Die stoor van waterstof vir eksport doeleindes sal deur die voorkeure van die mark bepaal word.
Description
Thesis (MEng)--Stellenbosch University, 2021.
Keywords
Hydrogen Storage, Liquid Hydrogen, LOHC, Compressed Hydrogen, UCTD, Energy storage
Citation