Aerodynamic damping of an oscillating fan blade: Numerical fluid structure interaction analysis
Date
2017-03
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Stellenbosch : Stellenbosch University
Abstract
ENGLISH SUMMARY: The thesis’ main objective is to determine the dynamic flow phenomena that dampen a fan blade’s oscillation amplitude using numerical fluid structure interaction (FSI) simulations. The observed flow effects include the formation and shedding of leading edge vortices, downwash and the added mass effect. Leading edge vortices are a major damping contributor and are dependent on the blade’s effective angle of attack. The aim of the thesis is to find a suitable method that is capable of simulating the aerodynamic damping of an axial fan used in an air cooled condenser unit. Therefore, three different numerical models are used to perform the FSI simulation and are compared according to their accuracy, robustness and computational cost. The aerodynamic damping of an oscillating fan blade was experimentally investigated by Basson (2015) and his results are used to validate the three numerical models. The three methods used are a mesh-based FSI simulation, a simplified one dimensional beam model coupled with a heuristic flow model and a meshless FSI simulation. The mesh based and meshless FSI simulations are both suitable for modelling the entire air cooled condenser fan unit, whereas the simplified 1D beam model is incapable of doing so.
AFRIKAANS OPSOMMING: Die tesis se hoofdoelwit is om die dinamiese vloei-verskynsels te bepaal wat ’n waaierlem se ossillasie amplitude demp met gebruik van numeriese vloei struktuur interaksie simulasies (FSI). Die waargeneemde vloei effekte sluit in die vorming en vergieting van leirand draaikolke, valstroomvloei en die bykomende massa-effek. Leirand draaikolke lewer ’n groot bydrae tot die demping en is afhanklik van die lem se effektiewe aanvalshoek. Die doel van die tesis is om ’n geskikte metode te vind wat in staat is om die aerodinamiese demping van ’n aksiale waaierlem in ’n lugverkoelde kondensoreenheid te simuleer. Daarom word drie verskillende numeriese modelle gebruik wat die vloei struktuur interaksie simulasie uitvoer en vergelyk volgens hul akkuraatheid, robuustheid en koste van berekening. Die aerodinamiese demping van ’n ossilerende waaierlem is eksperimenteel ondersoek deur Basson (2015) en sy resultate word gebruik om die drie numeriese modelle te bevestig. Die drie metodes is ’n rooster gebaseerde FSI simulasie, ’n vereenvoudigde een-dimensionele balk-model tesame met ’n heuristiese vloeimodel en ’n roosterlose FSI simulasie. Die rooster gebaseerde en roosterlose FSI simulasies is beide geskik vir die modellering van die hele lugverkoelde kondensor waaier eenheid, terwyl die vereenvoudigde 1D balk-model nie in staat is om dit te doen nie.
AFRIKAANS OPSOMMING: Die tesis se hoofdoelwit is om die dinamiese vloei-verskynsels te bepaal wat ’n waaierlem se ossillasie amplitude demp met gebruik van numeriese vloei struktuur interaksie simulasies (FSI). Die waargeneemde vloei effekte sluit in die vorming en vergieting van leirand draaikolke, valstroomvloei en die bykomende massa-effek. Leirand draaikolke lewer ’n groot bydrae tot die demping en is afhanklik van die lem se effektiewe aanvalshoek. Die doel van die tesis is om ’n geskikte metode te vind wat in staat is om die aerodinamiese demping van ’n aksiale waaierlem in ’n lugverkoelde kondensoreenheid te simuleer. Daarom word drie verskillende numeriese modelle gebruik wat die vloei struktuur interaksie simulasie uitvoer en vergelyk volgens hul akkuraatheid, robuustheid en koste van berekening. Die aerodinamiese demping van ’n ossilerende waaierlem is eksperimenteel ondersoek deur Basson (2015) en sy resultate word gebruik om die drie numeriese modelle te bevestig. Die drie metodes is ’n rooster gebaseerde FSI simulasie, ’n vereenvoudigde een-dimensionele balk-model tesame met ’n heuristiese vloeimodel en ’n roosterlose FSI simulasie. Die rooster gebaseerde en roosterlose FSI simulasies is beide geskik vir die modellering van die hele lugverkoelde kondensor waaier eenheid, terwyl die vereenvoudigde 1D balk-model nie in staat is om dit te doen nie.
Description
Thesis (MEng)--Stellenbosch University, 2017.
Keywords
Aerodynamics, Damping (Mechanics), Oscillations, Fans (Machinary), Blades, Fluid-structure interaction -- Analysis, UCTD