Development of a test setup to determine frictional losses on bicycle drivetrains.
Date
2024-02
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Stellenbosch : Stellenbosch University
Abstract
ENGLISH ABSTRACT: Cyclists compete purely under their own power, however the power output to the wheels is influenced by their equipment. Bicycle drivetrains are thus engineered to be as light and efficient as possible, but this may impact longevity without proper care and lubrication. Chain lubricants are developed for specific conditions, with characteristics resulting in better efficiency for shorter durations, or better resistance to contamination. To accurately determine the power losses in a given drivetrain for any given load condition, a test bench is required to simulate the real-world conditions these drivetrains are subjected to. This work presents the development of a test bench that is capable of performing three discreet tests: the frictional losses due the static radial loading on ball bearings used in the bottom brackets of bicycles, the isolated chain losses due to chain tension, and the complete system losses under full load conditions. All these tests require the measurement of speed and torque data to determine the power losses. In addition, the full load test requires a braking mechanism to supply the load. The speed and torque measurements were incorporated into a single, bespoke transducer. Strain gauge based torque transducers are the norm for industrial equipment, however a unique approach was pursued here. The transducer was constructed from a thin aluminium tube that deflects angularly under load. The ends of the tube were fitted with slotted disks which run through the line-of-sight path of a set of interrupter optical sensors. The sensor output signals were used to determine the angular velocity of each disk, as well as the relative angular deflection between the two disks. The angular deflection of the tube was used together with its known stiffness to determine the torque measured by the transducer. The sensor was calibrated and rated to measure torque above 0.2 Nm. Alongside the torque transducer, a custom eddy current brake was developed using permanent magnets with a spinning aluminium disk. This braking mechanism was chosen as it provides smooth loading and can be designed to accurately modulate the braking power. Control was successfully achieved by changing the relative position of the magnets to adjust the strength of the magnetic flux through which the disk is moving. The exact braking power of the eddy current brake is adjusted by using feedback control from the developed torque sensors. Filtering and smoothing of the measured speed and torque data was performed to ensure more stable control. Full system testing shows the torque induced by radially loaded bearings are lower than expected, while the developed sensor accurately measured the higher loading associated with full load conditions. Additionally, the eddy current brake is verified to supply the required braking power of 250Wduring full load testing. Drivetrain losses are seen to depend on the applied lubricant, with the highest efficiency measured to be 97.5 %.
AFRIKAANSE OPSOMMING: Fietsryers kompeteer slegs onder hul eie krag, maar die krag wat na die wiele oorgedra word, word deur hul toerusting beïnvloed. Fietsratstelsels word dus ontwerp om so lig en doeltreffend as moontlik te wees, maar dit kan die lewensduur negatief beïnvloed sonder behoorlike sorg en smeermiddels. Kettingsmeermiddels word vir spesifieke toestande ontwikkel, met eienskappe wat lei tot beter doeltreffendheid vir korter tydperke, of beter weerstand teen kontaminasie. Om die kragverliese in ’n gegewe ratstelsel vir enige ladingstoestand akkuraat te bepaal, word ’n toetsbank benodig om die werklike toestande na te boots wat hierdie ratstelsels aan onderwerp word. Hierdie werk bied die ontwikkeling van ’n toetsbank wat in staat is om drie afsonderlike toetse uit te voer, aan: die wrywingsverliese as gevolg van statiese radiale belasting op die laers wat op die trapas van fietse gebruik word, die geïsoleerde kettingverliese as gevolg van kettingspanning, en die volledige sisteemverliese onder volle ladingstoestande. Al drie toetse vereis die meting van spoed- en wringkragdata om die kragverliese te bepaal. Daarbenewens vereis die volle ladingtoets ’n remmeganisme om die lading te voorsien. Die spoed- en wringkragmetings was in ’n enkele, unieke oordragsensor geïntegreer. Spanningsmeter-gebaseerde wringkragsensors is die norm vir industriële toerusting, maar ’n unieke benadering is hier gevolg. Die sensor bestaan uit ’n dun aluminiumbuis wat hoeks onder lading deflekteer. Die ente van die buis was toegerus met gesplete skywe wat deur die siglyn van ’n stel onderbreker optiese sensors beweeg. Die sensors se uitvoerseine is gebruik om die hoeksnelheid van elke skyf, sowel as die relatiewe hoekige defleksie tussen die twee skywe te bepaal. Die hoekige defleksie van die buis, saam met sy bekende styfheid, is gebruik om die wringkrag wat deur die sensor gemeet word, te bepaal. Die sensor is gekalibreer en beoordeel om wringkrag bo 0.2 Nm akkuraat te meet. Gepaartgaande met die wringkragsensor is ’n pasgemaakte werwelstroomrem met permanente magnete en ’n roterende aluminiumskyf ontwikkel. Hierdie remmeganisme is gekies omdat dit gladde belasting bied en ontwerp kan word om die remkrag akkuraat te moduleer. Beheer is suksesvol bereik deur die relatiewe posisie van die magnete te verander, sodat die magneetveldsterkte waardeur die skyf roteer, aangepas word. Die presiese remkrag van die werwelstroomrem word aangepas deur terugvoerbeheer van die ontwikkelde wringkragsensors te gebruik. Filtrering en gladmaak van die gemeetde spoed- en wringkragdata word uitgevoer om meer stabiele beheer te verseker. Volledige sisteemtoetse toon aan dat die wringkrag wat deur radiaal belaaide laers veroorsaak word, laer as verwag is, terwyl die ontwikkelde sensor die hoër belasting wat met volle ladingstoestande gepaard gaan, akkuraat meet. Daarbenewens word geverifieer dat die werwelstroomrem die benodigde remkrag van 250Wtydens volle ladingtoetse kan lewer. Aandrywingverliese blyk afhanklik te wees van die aangewende smeermiddel, met die hoogste doeltreffendheid wat gemeet word as 97.5 %.
AFRIKAANSE OPSOMMING: Fietsryers kompeteer slegs onder hul eie krag, maar die krag wat na die wiele oorgedra word, word deur hul toerusting beïnvloed. Fietsratstelsels word dus ontwerp om so lig en doeltreffend as moontlik te wees, maar dit kan die lewensduur negatief beïnvloed sonder behoorlike sorg en smeermiddels. Kettingsmeermiddels word vir spesifieke toestande ontwikkel, met eienskappe wat lei tot beter doeltreffendheid vir korter tydperke, of beter weerstand teen kontaminasie. Om die kragverliese in ’n gegewe ratstelsel vir enige ladingstoestand akkuraat te bepaal, word ’n toetsbank benodig om die werklike toestande na te boots wat hierdie ratstelsels aan onderwerp word. Hierdie werk bied die ontwikkeling van ’n toetsbank wat in staat is om drie afsonderlike toetse uit te voer, aan: die wrywingsverliese as gevolg van statiese radiale belasting op die laers wat op die trapas van fietse gebruik word, die geïsoleerde kettingverliese as gevolg van kettingspanning, en die volledige sisteemverliese onder volle ladingstoestande. Al drie toetse vereis die meting van spoed- en wringkragdata om die kragverliese te bepaal. Daarbenewens vereis die volle ladingtoets ’n remmeganisme om die lading te voorsien. Die spoed- en wringkragmetings was in ’n enkele, unieke oordragsensor geïntegreer. Spanningsmeter-gebaseerde wringkragsensors is die norm vir industriële toerusting, maar ’n unieke benadering is hier gevolg. Die sensor bestaan uit ’n dun aluminiumbuis wat hoeks onder lading deflekteer. Die ente van die buis was toegerus met gesplete skywe wat deur die siglyn van ’n stel onderbreker optiese sensors beweeg. Die sensors se uitvoerseine is gebruik om die hoeksnelheid van elke skyf, sowel as die relatiewe hoekige defleksie tussen die twee skywe te bepaal. Die hoekige defleksie van die buis, saam met sy bekende styfheid, is gebruik om die wringkrag wat deur die sensor gemeet word, te bepaal. Die sensor is gekalibreer en beoordeel om wringkrag bo 0.2 Nm akkuraat te meet. Gepaartgaande met die wringkragsensor is ’n pasgemaakte werwelstroomrem met permanente magnete en ’n roterende aluminiumskyf ontwikkel. Hierdie remmeganisme is gekies omdat dit gladde belasting bied en ontwerp kan word om die remkrag akkuraat te moduleer. Beheer is suksesvol bereik deur die relatiewe posisie van die magnete te verander, sodat die magneetveldsterkte waardeur die skyf roteer, aangepas word. Die presiese remkrag van die werwelstroomrem word aangepas deur terugvoerbeheer van die ontwikkelde wringkragsensors te gebruik. Filtrering en gladmaak van die gemeetde spoed- en wringkragdata word uitgevoer om meer stabiele beheer te verseker. Volledige sisteemtoetse toon aan dat die wringkrag wat deur radiaal belaaide laers veroorsaak word, laer as verwag is, terwyl die ontwikkelde sensor die hoër belasting wat met volle ladingstoestande gepaard gaan, akkuraat meet. Daarbenewens word geverifieer dat die werwelstroomrem die benodigde remkrag van 250Wtydens volle ladingtoetse kan lewer. Aandrywingverliese blyk afhanklik te wees van die aangewende smeermiddel, met die hoogste doeltreffendheid wat gemeet word as 97.5 %.
Description
Thesis (MEng)--Stellenbosch University, 2024.