Random generation of finite automata over the domain of the regular languages

dc.contributor.advisorVan Zijl, L.
dc.contributor.authorRaitt, Lesley Anne
dc.contributor.otherStellenbosch University. Faculty of Science. Dept. of Mathematical Sciences. Institute for Applied Computer Science.en
dc.date.accessioned2012-02-08T12:08:44Z
dc.date.available2012-02-08T12:08:44Z
dc.date.issued2006-12
dc.descriptionThesis (MSc)--University of Stellenbosch, 2007.en_ZA
dc.description.abstractENGLISH ABSTRACT: The random generation of finite automata over the domain of their graph structures is a wellknown problem. However, random generation of finite automata over the domain of the regular languages has not been studied in such detail. Random generation algorithms designed for this domain would be useful for the investigation of the properties of the regular languages associated with the finite automata. We studied the existing enumerations and algorithms to randomly generate UDFAs and binary DFAs as they pertained to the domain of the regular languages. We evaluated the algorithms experimentally across the domain of the regular languages for small values of n and found the distributions non-uniform. Therefore, for UDFAs, we derived an algorithm for the random generation of UDFAs over the domain of the regular languages from Domaratzki et. al.’s [9] enumeration of the domain of the regular languages. Furthermore, for binary DFAs, we concluded that for large values of n, the bijection method is a viable means of randomly generating binary DFAs over the domain of the regular langagues. We looked at all the random generation of union-UNFAs and -UNFAs across the domain of the regular languages. Our study of these UNFAs took all possible variables for the generation of UNFAs into account. The random generation of UNFAs over the domain of the regular languages is an open problemen_ZA
dc.description.abstractAFRIKAANSE OPSOMMING: Die ewekansige generasie van eindige toestand outomate (eto’s) oor die domein van hul grafiekstrukture is ’n bekende probleem. Nieteenstaande het die ewekansige generasie van eindige toestand outomate oor die domein van die regulˆere tale nie soveel aandag gekry nie. Algoritmes wat eindige toestand outomate ewekansig genereer oor die domein van die regulˆere tale sal nuttig wees om die ondersoek van die eienskappe van regulˆere tale, wat met eto’s verbind is, te bewerkstellig. Ons het die bestaande aftellings en algoritmes bestudeer vir die ewekansige generasie van deterministiese eindige toestand outomate (deto’s) met een en twee alfabetiese simbole soos dit betrekking het op die domein van die regulˆere tale bestudeer. Ons het die algoritmes eksperimenteel beoordeel oor die domein van die regulˆere tale vir outomate met min toestande en bevind dat die verspreiding nie eenvomig is nie. Daarom het ons ’n algoritme afgelei vir die ewekansige generasie van deto’s met een alfabetsimbool oor die domein van die regulˆere tale van Domaratzki et. al. [9] se aftelling. Bowendien, in die geval van deto’s met twee alfabetsimbole met ’n groot hoeveelheid toestande is die ‘bijeksie metode ’n goeie algoritme om te gebruik vir die ewekansige generasie van hierdie deto’s oor die domein van die regulˆere tale. Ons het ook die ewekansige generasie van [-nie-deterministiese eindige toestand outomate en -nie-deterministiese eindige toestand outomate oor die domein van die regulˆere tale bestudeer. Ons studie van hierdie neto’s het alle moontlike veranderlikes in ageneem. Die ewekansige generering van deto’s oor die domein van die regulˆere tale is ’n ope probleem.af
dc.format.extentvi, 97 leaves : ill.
dc.identifier.urihttp://hdl.handle.net/10019.1/19646
dc.language.isoen_ZAen_ZA
dc.publisherStellenbosch : Stellenbosch University
dc.rights.holderStellenbosch Universityen_ZA
dc.subjectSequential machine theoryen_ZA
dc.subjectTheses -- Computer scienceen_ZA
dc.subjectDissertations -- Computer scienceen_ZA
dc.titleRandom generation of finite automata over the domain of the regular languagesen_ZA
dc.typeThesisen_ZA
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Raitt_random_2007.pdf
Size:
3.17 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.95 KB
Format:
Item-specific license agreed upon to submission
Description: