Pyrometallurgical refining of high grade PGM leach residues prior to precious metals separation

Date
2014-12
Journal Title
Journal ISSN
Volume Title
Publisher
Stellenbosch : Stellenbosch University
Abstract
ENGLISH ABSTRACT: Primary platinum mining companies use a complex multistage recovery and refining process. The removal of base metals in the base metal refinery (BMR) leaves a residue that requires a number of hazardous and expensive unit operations to prepare the platinum group metal (PGM) concentrate for final separation and refining. In the PGM industry, hydrometallurgy is used almost exclusively to refine material with a PGM content of more than a couple of per cent. This thesis proposes and investigates an alternative pyrometallurgical refining method to remove contaminants from a high grade PGM residue (e.g. residue from a BMR after the bulk of the base metals has been removed), whilst minimising aqueous wastes and potential PGM losses. The hypothesis behind the use of a pyrometallurgical process was the effective separation of a number of elements from the PGMs through the use of only a few processing steps. The noble nature of PGMs, i.e. their resistance to oxidation and low vapour pressure at high temperature, allows for effective separation. The theoretical feasibility of the concept was explored using thermochemical modelling. Modelling suggested that the use of a controlled atmosphere roasting step, followed by smelting and atomisation, could lead to a technically feasible process to separate PGMs from other metals. Throughout this thesis, thermochemical modelling was shown to be a useful tool to interpret and understand elemental behaviour across the roasting and smelting steps. It was experimentally illustrated that roasting of PGM residues in an oxidising environment at low temperatures (700 °C - 900 °C range) will selectively vaporise the volatile oxides of S, Se, Te and As (to varying degrees), that would otherwise be quite stable in the alloy or matte phase during a melt at low oxygen partial pressure. Arsenic volatilisation proceeded only partially (30 wt% to 60 wt%), probably due to the formation of a temperature stable species of arsenate. Osmium volatilisation was not properly described by modelling and proceeded only partially (30 wt% to 70 wt%), possibly due to the presence of Osmium in a solid solution phase that depresses the activity and correspondingly the fugacity. Although a number of the PGMs oxidise in the roasting temperature range, their vapour pressures do not allow measurable losses to the gas phase (apart from Osmium that is not recovered in most precious metal refineries). Almost all the PGMs reported to two separate solid solution phases during roasting. The smelting step allows the PGMs to dissociate from oxygen, alloy and melt, without the addition of a collector. The liquidus temperature was shown to be strongly influenced by the concentrations of impurities (S, Se, Te, As, Fe, Ni and Cu) in the feed to the melt and ranged between 1 235 °C and 1 510 °C. The most important variable necessary to avoid non-PGM elements (especially As, Pb, Fe and Ni) from joining the alloy phase is control of the partial oxygen pressure in the melt. Au losses due to volatilisation of species such as AuS, AuSe and AuTe were shown possible at higher temperatures, with 21% recovery loss measured at 1 700 °C in the presence of 6% Se, Te and S. Ru losses (ranging from 9% to 39%) across the smelting step were shown to be sensitive to the combined Fe, Ni and Cu content of the feed, the melting temperature and the partial oxygen pressure across the melt. With Cu addition (to achieve Cu content in the alloy phase >60% by weight), melting temperatures as low as 1 200 °C is sufficient to collect PGMs and separate them from the slag phase. However, Ru is insoluble in the Cu-rich alloy and varying Ru recoveries were measured, pointing to a possible loss mechanism. After casting and solidification of the melt, the alloy phase can be separated from the slag phase by mechanical means. Atomisation is necessary to break the alloy phase into fine particulate that allows improved leaching kinetics. From experimental test work and literature studies, it appears that fine particulate sizing (D50 of 20 μm) can be achieved at high pressure requirements (in excess of 400 bar). The necessity of re-melting the alloy phase before atomisation allows the opportunity for a high temperature treatment step. It was experimentally shown that near complete volatilisation of Pb and Bi can be achieved if the alloy is kept at 1 700 °C for 30 minutes in an inert environment. Significant Ag losses to the vapour phase were also measured across this high temperature treatment step. This study fundamentally and practically illustrated that it is possible to use pyrometallurgy to separate PGMs from a large number of metals/oxides/amphoterics present in leach residues. By effectively using a combination of roasting and smelting, it is possible to upgrade the PGM content of a pressure leach residue from low forty per cent to high eighty per cent, with low PGM losses. The proposed roasting, smelting and atomisation processes were able to remove the bulk of S, Se, Te, Bi, Pb, oxides (such as SiO2 and Cr2O3) and partially remove Os, As, Fe, Ni and Cu. It was experimentally shown that the PGM containing alloy is amenable to leaching in a chlorine environment as used in a precious metal refinery, but more work is necessary to achieve near complete dissolution. This investigation spanned a number of processing steps and measured the associated impact of each on multiple elements, and in that regard it does not follow a classical or typical doctoral thesis approach. However, a field of research has been studied that enjoys very little publication, apart from specialist alloys or specialist characteristics. This is in part due to the proprietary nature of PGM refining. This study contributes to the existing scientific knowledge base, but also to the process engineering knowledge base of the behaviour of high grade PGM residues at high temperatures.
AFRIKAANSE OPSOMMING: Primêre platinum mynbou maatskappye gebruik 'n komplekse multi herwinning en raffinerings proses. Die verwydering van basismetale in die BMR laat 'n oorskot wat 'n aantal gevaarlike en duur eenheid bedrywighede vereis om die PGM te konsentreer en voor te berei vir die finale PGM skeiding en raffinering. In die PGM-industrie word hidrometallurgie byna uitsluitlik gebruik om materiaal met 'n PGM inhoud van meer as 'n paar persent te raffineer. Hierdie tesis ondersoek 'n alternatiewe pirometallurgiese raffinerings metode om onsuiwerhede vanuit 'n hoë graad PGM oorskot (bv. oorskot van 'n BMR na die grootste deel van die basismetale verwyder is) te verwyder, terwyl waterige afval en potensiële PGM verliese verminder word. Die hipotese agter die gebruik van 'n pirometallurgiese proses was die effektiewe skeiding van 'n aantal elemente van die PGM'e deur die gebruik van slegs 'n paar verwerking stappe. Die edele aard van PGM'e, dws hul weerstand teen oksidasie en lae dampdruk by hoë temperature, maak voorsiening vir doeltreffende skeiding. Die teoretiese haalbaarheid van die konsep is ondersoek met behulp van termochemiese modelle. Modellering het voorgestel dat die gebruik van 'n beheerde atmosfeer rooster stap, gevolg deur smelting en atomisasie, kan lei tot 'n tegnies uitvoerbare proses om PGM'e te skei van ander metale. Dwarsoor hierdie tesis, is gewys dat termochemiese modelle 'n nuttige instrument is om elementele gedrag oor die rooster en smelt stappe te interpreteer en verstaan. Dit is eksperimenteel aangetoon dat die roostering van PGM oorskot in 'n oksiderende omgewing by lae temperature (700 °C - 900 °C), selektiewe verdamping van die vlugtige oksiede van S, Se, Te en As (met wisselende effektiwiteit) tot gevolg sal hê, wat andersins baie stabiel sal wees in die allooi of mat fase tydens 'n smelt stap teen 'n lae suurstof parsiële druk. Arseen vervlugtiging het slegs gedeeltelik voortgegaan (30 wt% tot 60 wt%), waarskynlik as gevolg van die vorming van 'n stabiele temperatuur spesie van arsenaat. Osmium vervlugtiging was nie behoorlik beskryf deur modellering nie en het slegs gedeeltelik voortgegaan (30 wt% tot 70 wt%), moontlik te danke aan die teenwoordigheid van Osmium in 'n vaste oplossing fase wat die aktiwiteit onderdruk en dienooreenkomstig die fugasiteit. Hoewel 'n aantal van die PGM’e oksideer in die rooster temperatuur bereik, laat hul dampdrukke nie meetbaar verliese na die gas fase toe nie (afgesien van Osmium, wat nie in die meeste edel metaal raffinaderye verhaal word nie). Byna al die PGM'e het gerapporteer aan twee afsonderlike vaste oplossing fases tydens die rooster stap. Tydens die smelt stap kan die PGM'e dissosieer van suurstof, legeer en smelt, sonder die toevoeging van 'n versamelaar. Die liquidus temperatuur word sterk beïnvloed deur die konsentrasies van onsuiwerhede (S, Se, Te, As, Fe, Ni en Cu) in die voer na die smelt en het gewissel tussen 1 235 °C en 1 510 °C. Die belangrikste veranderlike wat nodig is om nie-PGM elemente (veral, Pb, Fe en Ni) te verhoed dat hulle by die allooi fase aansluit, is die beheer van die parsiële suurstofdruk in die smelt. Au verliese as gevolg van vervlugtiging van spesies soos AuS, AuSe en AuTe is moontlik getoon by hoër temperature, met 21% verliese gemeet teen 1 700 °C in die teenwoordigheid van 6% Se, Te en S. Ru verliese (wat wissel van 9% tot 39%) oor die smelt stap is getoon om sensitief te wees vir die gekombineerde Fe, Ni en Cu inhoud van die voer, die smelt temperatuur en die parsiële suurstofdruk oor die smelt. Met Cu toevoeging (Cu-inhoud in die allooi fase >60% van die gewig) is smelt temperature so laag as 1 200 °C voldoende om PGM'e te versamel en hulle te skei van die slak fase. Ru is egter onoplosbaar in die Cu-ryk allooi en wisselende Ru herwinnings is gemeet, wat dui op 'n moontlike verlies meganisme. Na gieting en stolling van die smelt, kan die allooi fase van die slak fase geskei word op 'n meganiese wyse. Atomisering is nodig om die allooi fase in fyn partikels te breek wat verbeterde loging kinetika toelaat. Vanuit eksperimentele toetswerk en literatuur studies, blyk dit dat klein partikel groottes (D50 van 20 μm) bereik kan word teen hoë druk vereiste (meer as 400 bar). Die noodsaaklikheid om die allooi fase te her-smelt voor atomisering, laat die geleentheid toe vir 'n hoë temperatuur behandeling stap. Dit is eksperimenteel getoon dat naby volledige vervlugtiging van Pb en Bi bereik kan word indien die allooi by 1 700 °C gehou kan word vir 30 minute in 'n inerte omgewing. Beduidende Ag verliese na die dampfase is ook gemeet oor hierdie hoë temperatuur behandeling stap. Hierdie studie het fundamenteel en prakties geïllustreer dat dit moontlik is pirometallurgie te gebruik om PGM'e te skei van 'n groot aantal metale / oksiedes / amphoteriese elemente wat teenwoordig is in loog oorskot. Deur effektief gebruik te maak van 'n kombinasie van roostering en smelting, is dit moontlik om die PGM inhoud van 'n drukloog oorskot op te gradeer van lae veertig persent na hoë tagtig persent met lae PGM verliese. Die voorgestelde rooster, smelt en atomisering proses was in staat om die grootste deel te verwyder van S, Se, Te, Bi, Pb, oksiedes (soos SiO2 en Cr2O3) en om Os, As, Fe, Ni en Cu gedeelteliks te verwyder. Dit is eksperimenteel aangetoon dat die PGM allooi vatbaar is vir loging in 'n PMR chloried omgewing, maar meer werk is nodig om naby volledige oplosbaarheid te bereik. Hierdie ondersoek het 'n aantal verwerking stappe en die gepaardgaande impak van elk op verskeie elemente beslaan, en in dié opsig volg dit nie die klassieke of tipiese doktorale proefskrif benadering na nie. Maar, dit het 'n gebied van navorsing bestudeer wat baie min publikasie geniet, afgesien van spesialis legerings of spesialis eienskappe. Dit is deels te danke aan die geheimhoudelike aard van PGM raffinering. Hierdie studie dra nie net by tot die bestaande wetenskaplike kennis nie, maar dra ook by tot die proses-ingenieurswese kennis van die gedrag van hoë graad PGM loog oorskot teen hoë temperature.
Description
Thesis (PhD) -- Stellenbosch University, 2014.
Keywords
Smelting, Pyrometallurgy, Platinum mines and mining, Electrometallurgy
Citation