Hopf and Lie algebras in semi-additive varieties
dc.contributor.author | Porst, Hans E. | en_ZA |
dc.date.accessioned | 2019-02-19T09:38:12Z | |
dc.date.available | 2019-02-19T09:38:12Z | |
dc.date.issued | 2017 | |
dc.description | CITATION: Porst, H. E. 2017. Hopf and Lie algebras in semi-additive Varieties. Logical Methods in Computer Science, 13(2):1-13, doi:10.23638/LMCS-13(2:3)2017. | en_ZA |
dc.description | The original publication is available at https://lmcs.episciences.org/3315 | en_ZA |
dc.description.abstract | We study Hopf monoids in entropic semi-additive varieties with an emphasis on adjunctions related to the enveloping monoid functor and the primitive element functor. These investigations are based on the concept of the abelian core of a semi-additive variety variety and its monoidal structure in case the variety is entropic. | en_ZA |
dc.description.uri | https://lmcs.episciences.org/3315 | |
dc.description.version | Publisher's version | en_ZA |
dc.format.extent | 13 pages | en_ZA |
dc.identifier.citation | Porst, H. E. 2017. Hopf and Lie algebras in semi-additive Varieties. Logical Methods in Computer Science, 13(2):1-13, doi:10.23638/LMCS-13(2:3)2017 | |
dc.identifier.issn | 1860-5974 (online) | |
dc.identifier.other | doi:10.23638/LMCS-13(2:3)2017 | |
dc.identifier.uri | http://hdl.handle.net/10019.1/105437 | |
dc.language.iso | en_ZA | en_ZA |
dc.publisher | Logical Methods in Computer Science | en_ZA |
dc.rights.holder | Author retains copyright | en_ZA |
dc.subject | Lie algebra | en_ZA |
dc.subject | Factors (Algebra) | en_ZA |
dc.subject | Hopf algebra | en_ZA |
dc.subject | Varieties (Universal algebra) | en_ZA |
dc.title | Hopf and Lie algebras in semi-additive varieties | en_ZA |
dc.type | Article | en_ZA |