Mechanical properties of fly ash/slag based geopolymer concrete with the addition of macro fibres

Date
2014-12
Authors
Ryno, Barnard
Journal Title
Journal ISSN
Volume Title
Publisher
Stellenbosch : Stellenbosch University
Abstract
ENGLISH ABSTRACT: Geopolymer concrete is an alternative construction material that has comparable mechanical properties to that of ordinary Portland cement concrete, consisting of an aluminosilicate and an alkali solution. Fly ash based geopolymer concrete hardens through a process called geopolymerisation. This hardening process requires heat activation of temperatures above ambient. Thus, fly ash based geopolymer concrete will be an inadequate construction material for in-situ casting, as heat curing will be uneconomical. The study investigated fly ash/slag based geopolymer concrete. When slag is added to the matrix, curing at ambient temperatures is possible due to calcium silicate hydrates that form in conjunction with the geopolymeric gel. The main goal of the study is to obtain a better understanding of the mechanical properties of geopolymer concrete, cured at ambient temperatures. A significant number of mix variations were carried out to investigate the influence that the various parameters, present in the matrix, have on the compressive strength of fly ash/slag based geopolymer concrete. Promising results were found, as strengths as high as 72 MPa were obtained. The sodium hydroxide solution, the slag content and the amount of additional water in the matrix had the biggest influence on the compressive strength of the fly ash/slag based geopolymer concrete. The modulus of the elasticity of fly ash/slag based geopolymer concrete did not yield promising results as the majority of the specimens, regardless of the compressive strength, yielded a stiffness of less than 20 GPa. This is problematic from a structural point of view as this will result in large deflections of elements. The sodium hydroxide solution had the most significant influence on the elastic modulus of the geopolymer concrete. Steel and polypropylene fibres were added to a high- and low strength geopolymer concrete matrix to investigate the ductility improvement. The limit of proportionality mainly depended on the compressive strength of the geopolymer concrete, while the amount of fibres increased the energy absorption of the concrete. A similar strength OPC concrete mix was compared to the low strength geopolymer concrete and it was found that the OPC concrete specimen yielded slightly better flexural behaviour. Fibre pull-out tests were also conducted to investigate the fibre-matrix interface. From the knowledge gained during this study, it can be concluded that the use of fly ash/slag based geopolymer concrete, as an alternative binder material, is still some time away as there are many complications that need to be dealt with, especially the low modulus of elasticity. However, fly ash/slag based geopolymer concrete does have potential if these complications can be addressed.
AFRIKAANSE OPSOMMING: Geopolimeerbeton is ‘n alternatiewe konstruksiemateriaal wat vergelykbare meganiese eienskappe met beton waar OPC die binder is, en wat bestaan uit ‘n aluminosilikaat en ‘n alkaliese oplossing. Vliegas-gebaseerde geopolimeerbeton verhard tydens ‘n proses wat geopolimerisasie genoem word. Hierdie verhardingsproses benodig hitte-aktivering van temperature hoër as dié van die onmiddellike omgewing. Gevolglik sal vliegas-gebaseerde geopolimeerbeton ‘n ontoereikende konstruksiemateriaal vir in situ gietvorming wees, aangesien hitte-nabehandeling onekonomies sal wees. Die studie het vliegas/slagmentgebaseerde geopolimeerbeton ondersoek. Wanneer slagment by die bindmiddel gevoeg word, is nabehandeling by omliggende temperature moontlik as gevolg van kalsiumsilikaathidroksiede wat in verbinding met die geopolimeriese jel vorm. Die hoofdoel van die studie was om ‘n beter begrip te kry van die meganiese eienskappe van geopolimeerbeton, wat nabehandeling by omliggende temperature ontvang het. ‘n Aansienlike aantal meng variasies is uitgevoer om die invloed te ondersoek wat die verskeie parameters, aanwesig in die bindmiddel, op die druksterkte van die vliegas/slagmentgebaseerde geopolimeerbeton het. Belowende resultate is verkry en sterktes van tot so hoog as 72 MPa is opgelewer. Daar is gevind dat die sodiumhidroksiedoplossing, die slagmentinhoud en die hoeveelheid water in die bindmiddel die grootste invloed op die druksterkte van die vliegas/slagmentgebaseerde geopolimeerbeton gehad het. Die styfheid van die vliegas/slagmentgebaseerde geopolimeerbeton het nie belowende resultate opgelewer nie. Die meeste van die monsters, ongeag die druksterkte, het ‘n styfheid van minder as 20 GPa opgelewer. Vanuit ‘n strukturele oogpunt is dit problematies, omdat groot defleksies in elemente sal voorkom. Die sodiumhidroksiedoplossing het die grootste invloed op die styfheid van die vliegas/slagmentgebaseerde geopolimeerbeton gehad. Staal en polipropileenvesels is by ‘n hoë en lae sterke geopolimeer beton gevoeg om die buigbaarheid te ondersoek. Die die maksimum buigbaarheid het hoofsaaklik afgehang van die beton se druksterkte terwyl die hoeveelheid vesels die beton se energie-opname verhoog het. ‘n OPC beton mengsel van soortgelyke sterkte is vergelyk met die lae sterkte geopolimeerbeton en daar is gevind dat die OPC beton ietwat beter buigbaarheid opgelewer het. Veseluittrektoetse is uitgevoer om die veselbindmiddel se skeidingsvlak te ondersoek. Daar kan tot die gevolgtrekking gekom word dat, alhoewel belowende resultate verkry is, daar steeds sommige aspekte is wat ondersoek en verbeter moet word, in besonder die styfheid, voordat geopolimeerbeton as ‘n alternatiewe bindmiddel kan optree. Volgens die kennis opgedoen tydens hierdie studie, kan dit afgelei word dat die gebruik van vliegas/slagmentgebaseerde geopolimeerbeton, as 'n alternatiewe bindmiddel, nog 'n geruime tyd weg is, as gevolg van baie komplikasies wat gehandel moet word, veral die lae elastisiteitsmodulus. Tog het vliegas/slagmentgebaseerde geopolimeerbeton potensiaal as hierdie komplikasies verbeter kan word.
Description
Thesis (MEng) -- Stellenbosch University, 2014.
Keywords
Geopolymer concrete, Fibre reinforced concrete, Concrete -- Additives, Slag cement, Concrete -- Chemistry, Polymers, UCTD
Citation