A standardised model to quantify the financial impact of poor engineering information quality in the oil and gas industry
dc.contributor.author | Coetzer, Emile Otto | en_ZA |
dc.contributor.author | Vlok, P. J. | en_ZA |
dc.date.accessioned | 2020-01-28T07:44:14Z | |
dc.date.available | 2020-01-28T07:44:14Z | |
dc.date.issued | 2019 | |
dc.description | CITATION: Coetzer, E. O. & Vlok, P. J. 2019. A standardised model to quantify the financial impact of poor engineering information quality in the oil and gas industry. South African Journal of Industrial Engineering, 30(4):131-142, doi:10.7166/30-4-2080. | |
dc.description | The original publication is available at http://sajie.journals.ac.za | |
dc.description.abstract | ENGLISH ABSTRACT: Industry needs quality data, but digital formats increase the risk of lost data quality, implying huge risk. The benefits of data quality are difficult to calculate in order to justify the expense. A survey was developed and validated at an operating asset as a precedent. The elements are productivity and production loss, and increased cost and risk. A Monte Carlo method was field tested. The results were presented in graphical and Pareto form to facilitate funding and prioritisation. The results prove that the cost is significant. As a first exploration of the subject, opportunities exist for more sophisticated models, and for investigating causality. | en_ZA |
dc.description.abstract | AFRIKAANSE OPSOMMING: Die energie-industrie benodig hoë gehalte data, maar digitale formate verhoog die moontlikheid van gehalteverlies, wat groot risiko tot gevolg mag hê. Die voordele van data gehalte is moeilik berekenbaar en dus so ook die regverdiging van uitgawes verbonde aan verbeteringsprojekte. ʼn Meningspeiling is ontwikkel en gevalideer by ʼn aanleg in bedryf om sodoende ʼn presedent te skep. Die elemente is verlies aan produksie en produktiwiteit en verhoogde koste en risiko. ʼn Monte-Carlo simulasiemodel is gebou en getoets. Die resultate is grafies en in Pareto-formaat aangebied om befondsing en prioritisering te vergemaklik. Die resultate bewys dat die kostes noemenswaardig is. Geleenthede bestaan vir meer gesofistikeerde modelle en ʼn ondersoek na die oorsake moet van stapel gestuur world | af_ZA |
dc.description.uri | http://sajie.journals.ac.za/pub/article/view/2080 | |
dc.description.version | Publisher's version | |
dc.format.extent | 12 pages | en_ ZA |
dc.identifier.citation | Coetzer, E. O. & Vlok, P. J. 2019. A standardised model to quantify the financial impact of poor engineering information quality in the oil and gas industry. South African Journal of Industrial Engineering, 30(4):131-142, doi:10.7166/30-4-2080 | |
dc.identifier.issn | 2224-7890 (online) | |
dc.identifier.issn | 1012-277X (print) | |
dc.identifier.other | doi:10.7166/30-4-2080 | |
dc.identifier.uri | http://hdl.handle.net/10019.1/107384 | |
dc.language.iso | en_ZA | en_ZA |
dc.publisher | Southern African Institute for Industrial Engineering | en_ ZA |
dc.rights.holder | Authors retain copyright | en_ZA |
dc.subject | Data Quality | en_ZA |
dc.subject | Quality assurance — Management | en_ ZA |
dc.subject | Quality assurance — Standards | en_ ZA |
dc.subject | Oil and Gas industry | en_ZA |
dc.subject | Engineering — Standards | en_ZA |
dc.subject | Economic impact analysis | en_ZA |
dc.title | A standardised model to quantify the financial impact of poor engineering information quality in the oil and gas industry | en_ZA |
dc.type | Article | en_ZA |