Model-based exploration of the inter-relationships between diesel fuel properties and engine performance and exhaust emissions
Date
2023-03
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Stellenbosch : Stellenbosch University
Abstract
ENGLISH ABSTRACT: This work utilises artificial neural network models to enable examination of the relationships between diesel fuel properties and engine performance and exhaust emissions in novel ways. The models were trained with experimental test data to accurately predict engine performance and exhaust emission parameters using duty-cycle, engine control, and fuel property parameters as inputs. The training data were collected during an engine test campaign conducted at the Sasol Fuels
Application Centre in Cape Town, using a 15 litre, 373 kW heavy-duty diesel engine equipped with a common-rail fuel injection system and variable geometry turbocharger. The test fuels were formulated by blending market diesel fuels, refinery components, and biodiesel, to provide variations in pre-selected fuel properties, namely hydrogen to carbon ratio (H/C), oxygen to carbon ratio (O/C), derived cetane number (DCN), viscosity, and mid- and end-point distillation parameters. Care was taken to ensure that correlation between these fuel properties in the test fuel matrix was minimised, to avoid confounding model input variables. The test engine was exercised over a wide variety of transient test cycles during which fuel injection pressure, injection timing, air flow, and recirculated exhaust
gas flow were systematically varied. The transient test data were used for training dynamic, recurrent neural network models so that transient engine operation could be accurately simulated. Modelling was performed in the MATLAB programming environment and the cluster supercomputer facilities at the national Centre for High Performance Computing were used for model training. The resulting models could predict the transient engine torque and fuel consumption, and nitrogen oxide (NOx), soot, carbon monoxide (CO), total hydrocarbon (THC), and carbon dioxide (CO2) exhaust emissions with good accuracy, which provided assurance that the characterisation of the test fuels using the selected fuel property parameters was sufficient to capture the fuel-related effects. The model inputs can be varied independently within the limits of the training
dataset, enabling model-based parametric studies to be performed to quantify the relative impacts that the input variables have on engine performance and emissions. The newly-developed tool therefore allowed the effect of fuel properties to be examined through a new lens. NOx emissions were found to be primarily determined by the H/C and O/C ratios of the fuel, while soot was additionally impacted by DCN and viscosity. CO emissions showed the same trends as soot emissions, except that with DCN an opposite trend was observed. THC emissions were impacted by all fuel parameters but showed very little sensitivity to variations in engine control parameters. The models were also incorporated into a numerical optimisation routine which allowed synergies between fuel properties and engine control parameters to be identified to improve engine brake thermal efficiency (BTE). The H/C ratio was found to offer the greatest potential for improving the trade-off between BTE and NOx emissions. Besides providing a powerful new way to examine engine-fuel interactions, the tool can also be very useful for predicting the impact that new fuel formulations or fuel specification changes may have on engine performance and emissions.
AFRIKAANS OPSOMMING: Hierdie werk maak gebruik van kunsmatige neurale netwerkmodelle om die verwantskappe tussen dieselbrandstof-eienskappe en enjinverrigting en uitlaatgasse op nuwe maniere te ondersoek. Die modelle is opgelei met eksperimentele toetsdata om enjinwerkverrigting en uitlaatgas-emissieparameters akkuraat te voorspel deur dienssiklus-, enjinbeheer- en brandstofeienskap parameters as insette te gebruik. Die opleidingsdata is ingesamel tydens 'n enjin toetsveldtog wat by die Sasol Brandstof Toepassings Sentrum in Kaapstad uitgevoer is, met 'n 15 liter, 373 kW swaardiens-dieselenjin toegerus met 'n gemenespoor-brandstofinspuitingstelsel en turbo-aanjaer met veranderbare geometrie. Die toetsbrandstowwe is geformuleer deur die vermenging van markdieselbrandstof, raffinadery komponente en biodiesel om variasies in vooraf geselekteerde brandstofeienskappe te verskaf, naamlik waterstof tot koolstofverhouding (H/C), suurstof tot koolstofverhouding (O/C), afgeleide setaan getal (DCN), viskositeit, en middel- en eindpunt distillasie parameters. Sorg is gedra om te verseker dat korrelasie tussen hierdie brandstof-eienskappe in die toetsbrandstofmatriks tot die minimum beperk is, om verwarrende modelinsetveranderlikes te vermy. Die toetsenjin is oor 'n wye verskeidenheid van onbestendige toetssiklusse geoefen waartydens brandstofinspuitdruk, inspuittydsberekening, lugvloei en hersirkuleerde uitlaatgasvloei sistematies verander is. Die verbygaande toetsdata is gebruik vir die opleiding van dinamiese, herhalende neurale netwerkmodelle sodat onbestendige enjinwerking akkuraat gesimuleer kon word. Modellering is in die MATLAB-programmeringsomgewing uitgevoer en die groep superrekenaarfasiliteite by die nasionale Sentrum vir Hoëprestasie-rekenaarkunde is vir modelopleiding gebruik. Die resulterende modelle kan die onbestendige enjinwringkrag en brandstofverbruik, en stikstofoksied (NOx), roet, koolstofmonoksied (CO), totale koolwaterstof (THC) en koolstofdioksied (CO2) uitlaatgasse met goeie akkuraatheid voorspel, wat die versekering verskaf het dat die karakterisering van die toetsbrandstowwe deur gebruik te maak van die geselekteerde brandstofeienskap parameters, voldoende was om die brandstofverwante effekte vas te lê. Die model-insette kan onafhanklik gevarieer word binne die grense van die opleidingsdatastel, wat dit moontlik maak om modelgebaseerde parametriese studies uit te voer om die relatiewe impak, wat die insetveranderlikes op enjinverrigting en emissies het, te kwantifiseer. Die nuut-ontwikkelde instrument het dus toegelaat dat die effek van brandstof eienskappe deur 'n nuwe lens ondersoek kon word. Daar is gevind dat NOx-vrystellings hoofsaaklik bepaal word deur die H/C en O/C verhoudings van die brandstof, terwyl roet addisioneel deur DCN en viskositeit beïnvloed is. CO-vrystellings het dieselfde tendense as roetvrystellings getoon, behalwe dat met DCN 'n teenoorgestelde neiging waargeneem is. THC-emissies is deur alle brandstofparameters beïnvloed, maar het baie min sensitiwiteit vir variasies in enjinbeheerparameters getoon. Die modelle is ook in 'n numeriese optimeringsroetine geïnkorporeer wat sinergieë tussen randstofeienskappe en enjinbeheerparameters laat identifiseer om enjin remtermiesedoeltreffendheid (BTE) te verbeter. Daar is gevind dat die H/C verhouding die grootste potensiaal bied wat die uitruil tussen BTE en NOxvrystellings verbeter. Benewens die verskaffing van 'n kragtige nuwe manier om enjin-brandstof-interaksies te ondersoek, kan die instrument ook baie nuttig wees om die impak wat nuwe brandstofformulerings of brandstofspesifikasieveranderinge op enjinverrigting en emissies kan hê, te voorspel.
AFRIKAANS OPSOMMING: Hierdie werk maak gebruik van kunsmatige neurale netwerkmodelle om die verwantskappe tussen dieselbrandstof-eienskappe en enjinverrigting en uitlaatgasse op nuwe maniere te ondersoek. Die modelle is opgelei met eksperimentele toetsdata om enjinwerkverrigting en uitlaatgas-emissieparameters akkuraat te voorspel deur dienssiklus-, enjinbeheer- en brandstofeienskap parameters as insette te gebruik. Die opleidingsdata is ingesamel tydens 'n enjin toetsveldtog wat by die Sasol Brandstof Toepassings Sentrum in Kaapstad uitgevoer is, met 'n 15 liter, 373 kW swaardiens-dieselenjin toegerus met 'n gemenespoor-brandstofinspuitingstelsel en turbo-aanjaer met veranderbare geometrie. Die toetsbrandstowwe is geformuleer deur die vermenging van markdieselbrandstof, raffinadery komponente en biodiesel om variasies in vooraf geselekteerde brandstofeienskappe te verskaf, naamlik waterstof tot koolstofverhouding (H/C), suurstof tot koolstofverhouding (O/C), afgeleide setaan getal (DCN), viskositeit, en middel- en eindpunt distillasie parameters. Sorg is gedra om te verseker dat korrelasie tussen hierdie brandstof-eienskappe in die toetsbrandstofmatriks tot die minimum beperk is, om verwarrende modelinsetveranderlikes te vermy. Die toetsenjin is oor 'n wye verskeidenheid van onbestendige toetssiklusse geoefen waartydens brandstofinspuitdruk, inspuittydsberekening, lugvloei en hersirkuleerde uitlaatgasvloei sistematies verander is. Die verbygaande toetsdata is gebruik vir die opleiding van dinamiese, herhalende neurale netwerkmodelle sodat onbestendige enjinwerking akkuraat gesimuleer kon word. Modellering is in die MATLAB-programmeringsomgewing uitgevoer en die groep superrekenaarfasiliteite by die nasionale Sentrum vir Hoëprestasie-rekenaarkunde is vir modelopleiding gebruik. Die resulterende modelle kan die onbestendige enjinwringkrag en brandstofverbruik, en stikstofoksied (NOx), roet, koolstofmonoksied (CO), totale koolwaterstof (THC) en koolstofdioksied (CO2) uitlaatgasse met goeie akkuraatheid voorspel, wat die versekering verskaf het dat die karakterisering van die toetsbrandstowwe deur gebruik te maak van die geselekteerde brandstofeienskap parameters, voldoende was om die brandstofverwante effekte vas te lê. Die model-insette kan onafhanklik gevarieer word binne die grense van die opleidingsdatastel, wat dit moontlik maak om modelgebaseerde parametriese studies uit te voer om die relatiewe impak, wat die insetveranderlikes op enjinverrigting en emissies het, te kwantifiseer. Die nuut-ontwikkelde instrument het dus toegelaat dat die effek van brandstof eienskappe deur 'n nuwe lens ondersoek kon word. Daar is gevind dat NOx-vrystellings hoofsaaklik bepaal word deur die H/C en O/C verhoudings van die brandstof, terwyl roet addisioneel deur DCN en viskositeit beïnvloed is. CO-vrystellings het dieselfde tendense as roetvrystellings getoon, behalwe dat met DCN 'n teenoorgestelde neiging waargeneem is. THC-emissies is deur alle brandstofparameters beïnvloed, maar het baie min sensitiwiteit vir variasies in enjinbeheerparameters getoon. Die modelle is ook in 'n numeriese optimeringsroetine geïnkorporeer wat sinergieë tussen randstofeienskappe en enjinbeheerparameters laat identifiseer om enjin remtermiesedoeltreffendheid (BTE) te verbeter. Daar is gevind dat die H/C verhouding die grootste potensiaal bied wat die uitruil tussen BTE en NOxvrystellings verbeter. Benewens die verskaffing van 'n kragtige nuwe manier om enjin-brandstof-interaksies te ondersoek, kan die instrument ook baie nuttig wees om die impak wat nuwe brandstofformulerings of brandstofspesifikasieveranderinge op enjinverrigting en emissies kan hê, te voorspel.
Description
Thesis (PhD)--Stellenbosch University, 2023.