Using Micro-Doppler radar signals for human gait detection

dc.contributor.advisorVan Rooyen, G-J.en_ZA
dc.contributor.authorAlzogaiby, Adelen_ZA
dc.contributor.otherStellenbosch University. Faculty of Engineering. Dept. of Electrical and Electronic Engineering.en_ZA
dc.date.accessioned2014-04-16T17:31:02Z
dc.date.available2014-04-16T17:31:02Z
dc.date.issued2014-04en_ZA
dc.descriptionThesis (MScEng)--Stellenbosch University, 2014.en_ZA
dc.description.abstractENGLISH ABSTRACT: This work entails the development and performance analysis of a human gait detection system based on radar micro-Doppler signals. The system consists of a tracking functionality and a target classifier. Target micro-Doppler signatures are extracted with Short-Time Fourier Transform (STFT) based spectrogram providing a high-resolution signatures with the radar that is used. A feature extraction mechanism is developed to extract six features from the signature and an artificial neural network (A-NN) based classifier is designed to carry out the classification process. The system is tested on real X-band radar data of human subjects performing six activities. Those activities are walking and speed walking, walking with hands in pockets, marching, running, walking with a weapon, and walking with arms swaying. The multiclass classifier was designed to discriminate between those activities. High classification accuracy of 96% is demonstrated.en_ZA
dc.description.abstractAFRIKAANSE OPSOMMING: Hierdie werk behels die ontwikkeling, en analise van werksverrigting, van ’n menslike stapdetekor gebaseer op radar-mikrodoppleranalise. Die stelsel bestaan uit ’n teikenvolger en -klassifiseerder. Die mikrodoppler-kenmerke van ’n teiken word met behulp van die korttyd-Fourier-transform onttrek, en verskaf hoe-resolusie-kenmerke met die radar wat vir die implementering gebruik word. ’n Kenmerkontrekkingstelsel is ontwikkel om ses kenmerke vanuit die spektrogram te onttrek, en ’n kunsmatige neurale netwerk word as klassifiseerder gebruik. Die stelsel is met ’n X-band radar op werklike menslike beweging getoets, terwyl vrywilligers ses aktiwiteite uitgevoer het: loop, loop (hand in die sakke), marsjeer, hardloop, loop met ’n wapen, loop met arms wat swaai. Die multiklas-klassifiseerder is ontwerp om tussen hierdie aktiwiteite te onderskei. ’n Hoe klassifiseringsakkuraatheid van 96% word gedemonstreer.af_ZA
dc.format.extentxiv, 83 p. : ill.
dc.identifier.urihttp://hdl.handle.net/10019.1/86652
dc.language.isoen_ZA
dc.publisherStellenbosch : Stellenbosch Universityen_ZA
dc.rights.holderStellenbosch Universityen_ZA
dc.subjectDoppler radaren_ZA
dc.subjectDissertations -- Electrical and electronic engineeringen_ZA
dc.subjectUCTD
dc.subjectGait in humansen_ZA
dc.subjectDetectorsen_ZA
dc.subjectRadar targetsen_ZA
dc.subjectTracking radaren_ZA
dc.subjectImage systemsen_ZA
dc.subject.otherTheses -- Electrical and electronic engineeringen_ZA
dc.titleUsing Micro-Doppler radar signals for human gait detectionen_ZA
dc.typeThesisen_ZA
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
alzogaiby_using_2014.pdf
Size:
3.11 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.99 KB
Format:
Plain Text
Description: