Using drones to improve the quality control of masonry in affordable housing construction.

dc.contributor.advisorWium, Jan Andriesen_ZA
dc.contributor.authorRuthven, Pieter Gerharden_ZA
dc.contributor.otherStellenbosch University. Faculty of Engineering. Dept. of Civil Engineering.en_ZA
dc.date.accessioned2023-02-27T20:29:12Zen_ZA
dc.date.accessioned2023-05-18T07:16:33Zen_ZA
dc.date.available2023-02-27T20:29:12Zen_ZA
dc.date.available2023-05-18T07:16:33Zen_ZA
dc.date.issued2023-02en_ZA
dc.descriptionThesis (MEng)--Stellenbosch University, 2023.en_ZA
dc.description.abstractENGLISH ABSTRACT: The increasing housing backlog present in South Africa has resulted in the need for housing to be delivered with urgency. Attempting to deliver houses in a quantitative manner has led to quality being overlooked, although key role players have made it clear that there should be a shift towards qualitative delivery of housing. Research has found that quality concerns are recurring in affordable housing projects and therefore the need for improved quality control is evident. Motivated by the need to address these recurring problems, this study aims to investigate using a drone to improve the quality control on affordable housing projects, limited to the quality control of masonry works. Two affordable housing projects in the Western Cape were investigated over a period of two years to assist with achieving the aim of this study. The study seeks to improve aspects of dimensional quality control by firstly identifying the quality concerns on these projects by using traditional defect identification methods. A total of 1 048 measurements were taken on High Density Double Story (HDDS) units and 336 on Stand Alone Single Story (SASS) units. These measurements are compared to the specified dimensional requirements to identify which measurements do not adhere to the defined standards. Valuable findings are obtained and summarized from the data obtained using the traditional method. The study then investigates using a drone through 2D and 3D analysis to find a practical and effective manner through which dimensional aspects of quality control can be improved. Measurements taken from 2D images are compared to the actual measurements taken on site to determine the accuracy and effectiveness of using a drone in this manner. A 3D model of a housing unit is then developed through photogrammetry and accompanying software to assist with quality control through defect identification. The practicality and effectiveness of both methods are discussed by comparing them to the traditional method. From these findings it was determined that neither method would be practical and instead site progress monitoring through use of a drone is suggested to improve the dimensional aspects of quality control. A framework is then put forward as a recommendation to implement a drone on an affordable housing project.en_ZA
dc.description.abstractAFRIKAANS OPSOMMING: Die toenemende tekort aan behuising in Suid-Afrika, lei daartoe dat behuising dringend gelewer moet word. Die poging om huise op 'n kwantitatiewe wyse te lewer het tot gevolg gehad dat kwaliteit oorgesien word alhoewel sleutelrolspelers dit duidelik gemaak het dat daar ‘n verskuiwing na kwalitatiewe lewering van behuising moet plaasvind. Navorsing het gevind dat kwaliteitsprobleme in bekostigbare behuisingsprojekte herhaal word en daarom is die behoefte aan ʼn verbeterde manier van gehaltebeheer duidelik. Gemotiveer deur die behoefte om hierdie herhalende probleme aan te spreek, ondersoek hierdie studie die gebruik van 'n hommeltuig om die kwaliteitsbeheer op bekostigbare behuisingsprojekte te verbeter, beperk tot die kwaliteitsbeheer van messelwerk. Twee bekostigbare behuisingsprojekte in die Wes-Kaap is oor 'n tydperk van twee jaar ondersoek om die doel van hierdie studie te bereik. Die studie poog om kwaliteitsbeheer te verbeter deur eerstens die kwaliteitstekorte in hierdie projekte te identifiseer deur tradisionele identifikasiemetodes te gebruik. Altesaam 1 048 metings is geneem op hoëdigtheid, dubbelverdieping (afgekort as HDDS in hierdie studie) eenhede en 336 op alleenstaande enkelverdieping (SASS) eenhede. Dié word dan vergelyk met die projekspesifikasies om die metings te identifiseer wat nie aan die standaarde voldoen nie. Waardevolle uitkomstes word verkry en opgesom uit die data wat met die tradisionele metode geïdentifiseer is. Die studie ondersoek dan die gebruik van 'n hommeltuig deur 2D- en 3D- analise om 'n praktiese en effektiewe manier te vind waardeur kwaliteitsbeheer verbeter kan word. Metings wat van 2D-beelde geneem word, word vergelyk met die werklike metings wat op die terrein geneem is om die akkuraatheid en doeltreffendheid van die gebruik van 'n hommeltuig op hierdie manier te bepaal. 'n 3Dmodel van 'n behuisingseenheid word ook ontwikkel deur fotogrammetrie en epaardgaande sagteware om te help met kwaliteitbeheer deur defekidentifikasie. Die praktiese uitvoering en doeltreffendheid van beide metodes word dan bespreek deur dit met die tradisionele metode te vergelyk. Uit hierdie bevindinge word daar vasgestel dat nie een van die metodes prakties sou wees nie, en daar word voorgestel dat kwaliteit eerder beheer moet word deur monitering van terreinvordering deur die gebruik van 'n hommeltuig. 'n Raamwerk word voorgestel as 'n aanbeveling vir die gebruik van ʼn hommeltuig op 'n bekostigbare behuisingsprojek. af_ZA
dc.description.versionMastersen_ZA
dc.format.extentxiv, 169 pages : illustrations.en_ZA
dc.identifier.urihttp://hdl.handle.net/10019.1/127332en_ZA
dc.language.isoen_ZAen_ZA
dc.language.isoen_ZAen_ZA
dc.publisherStellenbosch : Stellenbosch Universityen_ZA
dc.rights.holderStellenbosch Universityen_ZA
dc.subject.lcshConstruction industry -- Quality controlen_ZA
dc.subject.lcshPublic housingen_ZA
dc.subject.lcshDrone aircraften_ZA
dc.subject.lcshStructural analysis (Engineering) -- Data processing en_ZA
dc.titleUsing drones to improve the quality control of masonry in affordable housing construction.en_ZA
dc.typeThesisen_ZA
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
ruthven_using_2023.pdf
Size:
28.36 MB
Format:
Adobe Portable Document Format
Description: