Development of a clinical pathway digital twin.
dc.contributor.advisor | Basson, AH | en_ZA |
dc.contributor.advisor | Kruger, K | en_ZA |
dc.contributor.author | Erwee, H | en_ZA |
dc.contributor.other | Stellenbosch University. Faculty of Engineering. Dept. of Mechanical and Mechatronic Engineering. | en_ZA |
dc.date.accessioned | 2024-02-26T12:01:28Z | en_ZA |
dc.date.accessioned | 2024-04-26T13:23:33Z | en_ZA |
dc.date.available | 2024-02-26T12:01:28Z | en_ZA |
dc.date.available | 2024-04-26T13:23:33Z | en_ZA |
dc.date.issued | 2024-02 | en_ZA |
dc.description | Thesis (MEng)--Stellenbosch University, 2024. | en_ZA |
dc.description.abstract | ENGLISH ABSTRACT: The healthcare industry faces significant challenges due to the rapid technological advancements of Industry 4.0 as large volumes of data gets generated within healthcare facilities daily, which contains complex data relationships and a high variety of data. This surge of data, coupled with the complex nature of healthcare environments, is making it hard for healthcare professionals to effectively interpret and utilise healthcare data. This research aims to address this challenge by investigating the potential integration of digital twin technology into the healthcare domain, specifically within a clinical pathway context. This study, therefore, evaluates the concept of a Clinical Pathway Digital Twin (CPDT) as an information management tool for enhanced healthcare within clinical pathways. A requirement analysis was conducted to derive a set of fundamental requirements that a typical CPDT should meet. Mediclinic SA played an instrumental role during this phase by facilitating on-site observations at their hip and knee replacement clinical pathway at the Mediclinic Durbanville Hospital. Insights from these observations, combined with insights from literature, led to the identification of the following key needs within the clinical pathway context: real-time monitoring, standardised processes, regular and automatic data analysis, and effective human integration. In the research presented here, the CPDT requirements specifically focussed on enabling regular and automated data analysis within the clinical pathway. A proof-of-concept CPDT was developed and evaluated using a case study-based approach. The development of the CPDT followed a holonic system design process, using the Activity-Resource-Type-Instance (ARTI) holonic architecture. The Biography-Attributes-Schedule-Execution (BASE) platform was used to implement the holons. The CPDT is the first application of the BASE platform to explore its use for managing large volumes of data. Furthermore, the CPDT utilised an external data repository for the long-term storage of clinical pathway data and interfaced with external software to perform advanced analyses. In the case study, experiments were conducted to evaluate the CPDT's performance. These experiments demonstrated the CPDT’s ability to ingest data from data repositories, perform automated statistical analyses, and generate on-demand reports, thereby reducing manual tasks for healthcare professionals. The CPDT's interfacing with external analysis software for machine learning predictions of future activities demonstrated how healthcare professionals can derive valuable insights from the CPDT to inform decision-making within the clinical pathway. The CPDT successfully fulfilled all its functional requirements. Its modular ARTIbased holonic architecture allows easy adjustment of holon capabilities through modification of BASE plugins. The decentralised approach to clinical pathway data management demonstrated high data integrity and flexibility. The practical value of the CPDT is evident from the case study, with potential to improve clinical pathway efficiency, improve patient outcomes, and reduce healthcare costs. While the case study focused on a hip and knee replacement clinical pathway context, the results show potential for application across various clinical pathways, warranting further investigation and research. | en_ZA |
dc.description.abstract | AFRIKAANSE OPSOMMING: Die gesondheidsorgbedryf staar ernstige uitdagings in die gesig as gevolg van die vinnige tegnologiese vooruitgang van Industrie 4.0, aangesien groot hoeveelhede data daagliks in gesondheidsfasiliteite gegenereer word. Hierdie data bevat komplekse data-verhoudings en 'n hoë verskeidenheid data. Hierdie data, gekombineer met die komplekse aard van gesondheidsorgomgewings, maak dit vir gesondheidsorgwerkers moeilik om hierdie data doeltreffend te interpreteer en benut. Hierdie navorsing poog om hierdie uitdaging aan te spreek deur die potensiële integrasie van digitale tweeling tegnologie in die gesondheiddomein te ondersoek, spesifiek binne die konteks van 'n kliniese pad. Hierdie studie stel die konsep van 'n Kliniese Pad Digitale Tweeling (Clinical Pathway Digital Twin , CPDT) voor as 'n inligtingbestuursinstrument vir verbeterde gesondheidsdienste. 'n Vereiste-analise is uitgevoer om 'n stel fundamentele vereistes af te lei waaraan 'n tipiese CPDT moet voldoen. Mediclinic SA het 'n instrumentele rol gespeel deur gedurende hierdie fase fasiliteite beskikbaar te stel vir waarnemings op hul heupen knievervanging kliniese-pad by die Mediclinic Durbanville Hospitaal. Insigte uit hierdie waarnemings, gekombineer met insigte uit literatuur, het gelei tot die identifikasie van die volgende sleutelbehoeftes binne die kliniese pad konteks: intydse monitering, gestandaardiseerde prosesse, gereelde en outomatiese dataanalise, en effektiewe menslike integrasie. In hierdie navorsing is die CPDT vereistes toegespits om gereelde en outomatiese data-analise binne die kliniese pad moontlik te maak. 'n Bewys-van-konsep CPDT is in hierdie navorsing ontwikkel en is geëvalueer deur middel van 'n gevallestudie-gebaseerde benadering. Die ontwikkeling van die CPDT het 'n holoniese stelselontwerp proses gevolg deur gebruik te maak van die Aktiwiteit-Hulpbron-Tipe-Instansie (Activity-Resource-Type-Instance, ARTI) holoniese argitektuur. Die Biografie-Eienskappe-Skedule-Uitvoering (BiographyAttributes-Schedule-Execution, BASE) platform is gebruik om die holons te implementeer. Die CPDT is die eerste toepassing van die BASE platform wat die platform se gebruik vir die bestuur van groot hoeveelhede data ondersoek. Verder het die CPDT 'n eksterne data stoor plek gebruik vir die langtermyn berging van kliniese pad data en het gekoppel met eksterne sagteware vir gevorderde analises. In die gevallestudie is eksperimente uitgevoer om die prestasie van die CPDT te evalueer. Hierdie eksperimente het die CPDT se vermoë getoon om data van data stoor plekke te ontvang, outomatiese statistiese analises uit te voer, en op aanvraag verslae te genereer, wat sodoende die hoeveelheid handmatige take vir gesondheidsorgwerkers verminder. Die CPDT se koppeling met eksterne analise sagteware vir masjienleer-voorspellings het gedemonstreer hoe gesondheidsorgwerkers waardevolle insigte uit die CPDT kan aflei om besluitneming binne die kliniese pad te ondersteun. Die CPDT het met sukses al sy funksionele vereistes nagekom. Die modulêre ARTI-gebaseerde holoniese argitektuur maak dit maklik om die verskillende holons se vermoëns aan te pas deur die aanpassing van BASE-inproppe. Die gedesentraliseerde benadering tot die bestuur van kliniese pad data het hoë dataintegriteit en buigsaamheid gedemonstreer. Die praktiese waarde van die CPDT is duidelik uit die gevallestudie, met potensiaal om die doeltreffendheid van kliniese paaie te verbeter, pasiënt uitkomste te verbeter en gesondheidsorgkoste te verminder. Terwyl die gevallestudie gefokus het op 'n heup- en knievervanging kliniese-pad konteks, toon resultate die potensiaal vir toepassings oor 'n verskeidenheid kliniese paaie, wat verdere ondersoek en navorsing regverdig. | af_ZA |
dc.description.version | Masters | en_ZA |
dc.format.extent | xiv, 106 pages : illustrations | en_ZA |
dc.identifier.uri | https://scholar.sun.ac.za/handle/10019.1/130322 | en_ZA |
dc.language.iso | en_ZA | en_ZA |
dc.language.iso | en_ZA | en_ZA |
dc.publisher | Stellenbosch : Stellenbosch University | en_ZA |
dc.rights.holder | Stellenbosch University | en_ZA |
dc.subject.lcsh | Medical informatics | en_ZA |
dc.subject.lcsh | Cooperating objects (Computer systems) | en_ZA |
dc.subject.lcsh | Digital twins (Computer simulation) | en_ZA |
dc.subject.lcsh | Industry 4.0 | en_ZA |
dc.subject.lcsh | UCTD | ebn_ZA |
dc.title | Development of a clinical pathway digital twin. | en_ZA |
dc.type | Thesis | en_ZA |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- erwee_clinical_2024.pdf
- Size:
- 4.14 MB
- Format:
- Adobe Portable Document Format
- Description: