Techno-economic and life-cycle analysis of polyethylene, polyethylene furanoate and polyethylene terephthalate production in integrated sugarcane biorefineries

Date
2024-03
Journal Title
Journal ISSN
Volume Title
Publisher
Stellenbosch : Stellenbosch University
Abstract
ENGLISH ABSTRACT: The South African sugar industry is under threat due to ageing infrastructure and a decreasing local sugar demand, caused by growing consumer awareness and taxes, such as the Health Promotion Levy, forcing local producers to export sugar at prices lower than production cost. A potential solution is to diversify the sugarcane value chain by converting sugarcane-based feedstock into valuable fuels and chemicals. Bioplastics have gained considerable interest in recent years, due to concerns such as diminishing fossil reserves and climate change. Polyethylene (PE), polyethylene terephthalate (PET) and polyethylene furanoate (PEF) are three favoured plastics that can be produced from biomass. The primary aim of this project was to assess the sustainability of producing these bioplastics, along with their respective monomers and precursors, in integrated sugarcane biorefineries. Biorefineries were designed to be bioenergy self-sufficient, meaning the energy demands of both the sugar mill and biorefinery were met using the available biomass on-site. Process simulations were developed in Aspen Plus® for PE, PET, PEF, ethylene, monoethylene glycol (MEG), terephthalic acid (TPA), isobutanol (iButOH), 5-hydroxymethyl furfural (HMF), p-xylene and 2,5-furandicarboxylic acid (FDCA). The mass and energy results obtained from the simulations were utilized in a discounted cash flow analysis (DCFA) to assess the economic feasibility of biorefineries. The environmental impacts of bioproducts were assessed in a SimaPro based life-cycle assessment. A multi-criteria analysis, which considered both economic and environmental performance, was used to determine the sustainability of bioproducts. A-molasses (1G) emerged as the optimal biorefinery feedstock due to its high concentration of simple sugars, in contrast to 2G lignocellulosic biomass, which required costly and energy-intensive processing, even when used in combination with molasses in a 1G2G biorefinery feed. Among the bioplastics, 1G PEF required the lowest “green” price premium (GPP) (44.4%), followed by 1G PE (56.1%) and 1G PET (128.1%). PEF was more profitable than PET due to the relative ease and lower cost of producing its primary monomer, FDCA, compared to TPA. PE was less profitable than PEF due to its low production rate, a consequence of significant mass elimination during ethanol dehydration. The top five most economically viable biorefinery scenarios were 1G iButOH (-19.0% GPP), 1G2G iButOH (11.9% GPP), 1G FDCA (11.9% GPP), 1G PEF (44.4% GPP) and 1G PE (56.1% GPP). FDCA and iButOH production involved fewer steps, lower energy demands, and lower equipment and operating costs when compared to more complex monomer and polymer processes. PE and iButOH had the lowest environmental footprints, with weighted impact factors (IF) of 0.37 and 0.40, respectively. In contrast PET (IF: 1.35), PEF (IF: 1.15), and FDCA (IF: 1.20) demonstrated lower sustainability due to their increased reliance on metal catalysts, organic solvents, and other material inputs compared to PE and iButOH. Bioproducts showcased 33.2% - 81.2% lower CO2 equivalent emissions and consumed 41.9% - 90.1% less fossil-fuels compared to their fossil-based counterparts, in exchange for higher impacts (except for iButOH) in other categories, including eutrophication, https://scholar.sun.ac.za iii acidification, and ecotoxicity. These elevated impacts were primarily attributed to adverse side-effects of sugarcane cultivation. Among all the scenarios, iButOH was the most sustainable investment, displaying both exceptional economic and environmental performance. The potential for emerging technologies to produce MEG and TPA directly from sugars holds promise for achieving greater sustainability of bioplastics in the future.
AFRIKAANSE OPSOMMING: Die Suid-Afrikaanse suikerindustrie is onder gedrang as gevolg van verouderde infrastruktuur en ’n afname in plaaslike suikeraanvraag, veroorsaak deur groeiende verbruikersbewustheid en belasting, soos die Gesondheidsbevorderingsheffing, wat plaaslike produsente forseer om suiker uit te voer teen pryse laer as produksiekostes. ’n Potensiële oplossing is om die suikerrietwaardeketting te diversifiseer deur suikerriet-gebaseerde voermateriaal in waardevolle brandstowwe en chemikalieë te verander. Bioplastiek het aansienlike belang gekry in die laaste jare, as gevolg van kommers soos die afnemende fossielhulpbronne en klimaatsverandering. Polietileen (PE), polietileenterepfalaat (PET) en polietileenfuranoaat (PEF) is drie gunstelling platieke wat uit biomassa geproduseer kan word. Die primêre doel van hierdie projek was om die volhoubaarheid van die produksie van hierdie bioplastieke te assesseer, saam met hul onderskeidelike monomere en voorlopers, in geïntegreerde suikerrietbioraffinaderye. Bioraffinaderye is ontwerp om bio-energieselfstandig te wees, bedoelende die energievereistes van beide die suikermeule en bioraffinadery word gemeet deur die gebruik van die beskikbare biomassa op-terrein. Prosessimulasies is ontwikkel in Aspen Plus ® vir PE, PET, PEF, etileen, monoetileenglikol (MEG), tereftaalsuur (TPA), isobutanol (iButOH), 5- hidroksiemetaalfurfuraal (HMF), p-xileen en 2,5-furandikarboksielsuur (FDCA). Die massa- en energieresultate verkry van die simulasies is gebruik in ’n verdiskonteerde kontantvloei-analise (DCFA) om die ekonomiese uitvoerbaarheid van bioraffindarye te assesseer. Die omgewingsimpak van bioprodukte is geassesseer in ’n SimaPro-gebaseerde lewensiklusassessering. ’n Multi-kriteria-analise, wat beide ekonomies en omgewingsdoeltreffendheid oorweeg, is gebruik om die volhoubaarheid van bioprodukte te bepaal. A-molassa (1G) het as die optimale bioraffinaderyvoermateriaal geblyk as gevolg van sy hoë konsentrasie van eenvoudige suikers, in kontras met 2G-lignosellulosiese biomassa in ’n 1G2G-bioraffinaderyvoer. Onder die bioplastieke, 1G PEF vereis die laagste “groen” pryspremie (GPP) (44.4%), gevolg deur 1G Pe (56.1%) en 1G PET (128.1%). PEF was meer winsgewend as PET as gevolg van die relatiewe gemak en laer koste van produksie van sy primêre monomeer, FDCA, in vergelyking met TPA. PE was minder winsgewend as PEF as gevolg van sy lae produksietempo, ’n resultaat van beduidende massa eliminasie gedurende etanol dehidrasie. Die top vyf mees ekonomiese uitvoerbare bioraffinadery scenario’s was 1G iButOH (-19.0% GPP), 1G2G iButOH (11.9%), 1 G FDCA (11.9%), 1G PEF (44.4% GPP) en 1G PE (56.1% GPP). FDCA- en iButOH-produksie het minder stappe ingesluit, laer energievereistes, en laer toerusting en bedryfskostes wanneer vergelyk word met meer komplekse monomeer- en polimeerprosesse. PE en iButOH het die laagste omgewingsvoetspore gehad, met gelaaide-impakfaktore (IF) van 0.37 en 0.40, onderskeidelik. In kontras het PET (IF: 1.35), PEF (IF:1.15) en FDCA (IF: 1.20) laer volhoubaarheid gedemonstreer as gevolg van hul verhoogde afhanklikheid op metaalkatalisators, organiese oplosmiddels, en ander materiaalinsette in vergelyking met PE en iButOH. Bioprodukte het 33.2% - 81.2% laer CO2- https://scholar.sun.ac.za v ekwivalente emissies vertoon en verbruik 41.9% - 90.1% minder fossielbrandstowwe in vergelyking met ander fossiel-gebaseerde eweknieë, in ruil vir hoër impak (behalwe vir iButOH) in ander kategorieë, insluitend eutrofikasie, versuring, en ekotoksisiteit. Hierdie verhoogde impak word primêr toegeskryf aan nadelige newe-effekte van suikerrietkultivering. Onder al die scenario’s, was iButOH die mees volhoubare belegging, en toon beide uitmuntende ekonomiese en omgewingsdoeltreffendheid. Die potensiaal vir opkomende tegnologieë om MEG en TPA direk van suiker te produseer, hou beloftes in vir groter volhoubaarheid van bioplastieke in die toekoms
Description
Thesis (PhD)--Stellenbosch University, 2024.
Keywords
Citation