Selective recovery of metals from citric acid leach solutions during the recycling of lithium-ion batteries

Date
2022-04
Journal Title
Journal ISSN
Volume Title
Publisher
Stellenbosch : Stellenbosch University
Abstract
ENGLISH SUMMARY: Recycling has become an imperative part of the lithium-ion battery (LIB) life cycle due to growing demand for energy storage in applications like electric vehicles and renewable energy technologies, as well as government legislations requiring the recycling of LIBs to reduce environmentally harmful waste. LIB recycling processes must therefore aim to provide a secondary source for strategically scarce metals, like lithium and cobalt, while seeking to reduce the environmental impact of LIB waste. This project aimed to develop a hydrometallurgical process based on environmentally-friendly reagents to recover manganese, lithium, cobalt, and nickel in separate product streams from end-of-life lithium-ion batteries. Organic acids are effective lixiviants in hydrometallurgical recovery of metals from scrap LIBs, having the added benefit of being more environmentally benign than mineral acids. Among these organic acids, citric acid exhibits similar extraction performance when compared to mineral acids. Leaching LiCoO2 (LCO) and LiNixMnyCozO2 (NMC) cathode powder following dismantling and aluminium removal with 1.5M citric acid, 2 vol.% H2O2 at 95°C and 20 g/L for 20 minutes, achieved 93% Al, 90% Co, 96% Li, 94% Mn, and 94% Ni dissolution, confirming citric acid’s performance as lixiviant. A combination of solvent extraction and precipitation technologies was then used to sequentially separate cobalt, lithium, manganese, and nickel from the citric acid leach solution. A diverse range organic extractants, namely: Versatic 10, Cyanex 272, PC-88A, D2EHPA, LIX 84-IC, LIX 984N-C, TBP, Alamine 308, Alamine 336, and Aliquat 336TG was screened to determine which metals can be selectively separated from the citrate leach solution. It was concluded that manganese and residual aluminium are best separated from the PLS under strong acidic conditions with D2EHPA, after which lithium can be separated under weak acidic conditions with D2EHPA in a second subsequent extraction. The cobalt and nickel were separated poorly by the organic extractants and would thus be separated by precipitation from the lithium extraction raffinate. The first separation of manganese and trace aluminium was optimized with 12 vol.% D2EHPA in kerosene at a pH of 2.5 and O/A ratio of 2 when using 3 counter current stages, which separated 99.9% Mn and 80% Al from the PLS. The co-extraction of other metals under optimum conditions was determined to be 7.7% Co, 12.1% Li, and 4.9% Ni. Comparable stripping performance was achieved with sulphuric acid and citric acid from the loaded organic and thus citric acid was chosen as stripping agent. Optimal stripping of the aluminium and manganese loaded organic was achieved with 1.5M citric acid at an A/O ratio of 2, where 78% Mn and 20% Al was stripped in a single stage. The novel second, sequential extraction separated 93.6% Li to a reversible 3rd phase under weak acidic conditions where the optimal lithium separation was achieved with 23 vol.% D2EHPA in kerosene at a pH 5.5 and O/A ratio of 4 with 3 counter-current stages. The co-extraction during the optimum lithium separation included 6.6% Co and Ni. The lithium loaded 3rd phase and diluent emulsion was selectively stripped with 1.5M citric acid and an A/O ratio of 1 to recover 71% Li with 24% Co and Ni in one stage. Optimal nickel precipitation from the lithium extraction raffinate using DMG was achieved with a Ni/DMG ratio of 0.2 at a pH of 8, which enabled 98.5% Ni precipitation with 20% Co co-precipitation. The final effluent from the process had a 96.1 wt.% cobalt purity (metal basis) in the aqueous phase. This hydrometallurgical process was therefore capable of effectively separating the LIB metals from an organic acid PLS to individual metal product streams.
AFRIKAANS SUMMARY: Herwinning het ’n noodsaaklike deel van die litiumioonbattery (LIB) se lewensiklus geword as gevolg van die groeiende vereiste vir energieverberging in toepassings soos elektriese voertuie en hernubare energietegnologieë, sowel as regeringswetgewing wat die herwinning van LIBs vereis om skadelike afval vir die omgewing te verminder. LIB-herwinningprosesse moet daarom beoog om ’n sekondêre bron vir strategiese skaars metale, soos litium en kobalt, te voorsien, terwyl ook gepoog word om die omgewingsimpak van LIB- afval te verminder. Hierdie projek het beoog om ’n hidrometallurgiese proses gebaseer op omgewingsvriendelike reagense te ontwikkel om mangaan, litium, kobalt, en nikkel in aparte produkstrome te herwin uit end-van-lewe litiumioonbatterye. Organiese sure is effektiewe loogmiddels in hidrometallurgiese herwinning van metale uit LIB-skroot, wat die toegevoegde voordeel het om meer omgewingsvriendelik te wees as mineraalsure. Onder hierdie organiese sure, het sitroensuur soortgelyke ekstraksiedoeltreffendheid getoon as dit vergelyk word met mineraalsure. Loging van LiCoO2 (LCO) en LiNixMnyCozO2 (NMC) katodepoeier na demontering en aluminiumverwydering, met 1.5 M sitroensuur, 2 vol.% H2O2 by 95 °C en 20 g/L vir 20 minute, het 93% Al, 90% Co, 96% Li, 94% Mn, en 94% Ni-oplossing bereik, wat sitroensuur se doeltreffendheid as loogmiddel bewys. ’n Kombinasie van oplosmiddelekstraksie en presipitasietegnologieë is toe gebruik om kobalt, litium, mangaan, en nikkel sekwensieel uit die sitroensuurloogoplossing te skei. ’n Diverse verskeidenheid organiese ekstraheermiddels, naamlik Versatic 10, Cyanex 272, PC-88A, D2EHPA, LIX 84-IC, LIX 984N-C, TBP, Alamine 308, Alamine 336, en Aliquat 336TG is gekeur om te bepaal watter metale selektief geskei kan word van die sitraatloogmiddel. Dit is vasgestel dat mangaan en residuele aluminium die beste geskei kan word van die logingsoplossing (PLS) onder sterk suur kondisies met D2EHPA, waarna litium geskei kan word onder swak suur kondisies met D2EHPA in ’n tweede opeenvolgende ekstraksie. Die kobalt en nikkel is swak geskei deur die organiese ekstraheermiddels en sou dus geskei moes word deur presipitasie uit die litiumekstraksieraffinaat. Die eerste skeiding van mangaan en spooraluminium is geoptimeer met 12 vol.% D2EHPA in keroseen by ’n pH van 2.5 en O/A-ratio van 2 wanneer drie teenstroomfases gebruik word, wat 99.9% Mn en 80% Al van die PLS geskei het. Die koëkstraksie van ander metale onder optimum kondisies is bepaal as 7.7% Co, 12.1% Li, en 4.9% Ni. Vergelykbare stropingdoeltreffendheid is bereik met swawelsuur en sitroensuur uit die gelaaide organiese middel en dus is sitroensuur gekies as stropingsmiddel. Optimale stroping van die aluminium-en- mangaan-gelaaide organiese middel is bereik met 1.5 M sitroensuur by ’n A/O-ratio van 2, waar 78% Mn en 20% Al gestroop is in ’n enkel fase. Die nuwe tweede, sekwensiële ekstraksie het 93.6% Li geskei na ’n omkeerbare derde fase onder swak suur kondisies waar die optimale litiumskeiding bereik is met 23 vol.% D2EHPA in keroseen by ’n pH 5.5 en O/A- ratio van 4 met drie teenstroomfases. Die koëkstraksie gedurende die optimale litiumskeiding het 6.6% Co en Ni ingesluit. Die litium-gelaaide derde fase en verdunde emulsie is selektief gestroop met 1.5 M sitroensuur en ’n A/O-verhouding van 1 om 71% Li te stroop met 24% Co en Ni in een fase. Optimale nikkelpresipitasie van die litiumekstraksierafinaat deur die gebruik van dimetielglioksim (DMG) is bereik met ’n Ni/DMG-verhouding van 0.2 by ’n pH van 8, wat 98.5% Ni-presipitasie met 20% Co- kopresipitasie in staat gestel het. Die finale uitvloeisel van die proses het ’n 96.1 wt.% kobaltsuiwerheid (metaalbasis) in die waterige fase gehad. Hierdie hidrometallurgiese proses is daarom in staat om die LIB- metale doeltreffend van ’n organiese suur PLS te skei, met individuele metaalprodukstrome.
Description
Thesis (PhD)--Stellenbosch University, 2022.
Keywords
Lithium ion batteries, Hydrometallurgy, Metals -- Recycling, Citric acid, Solvent extraction, UCTD
Citation