Gene polymorphisms in African buffalo sssociated with susceptibility to Bovine tuberculosis infection
dc.contributor.author | Le Roex, Nikki | |
dc.contributor.author | Koets, Ad P. | |
dc.contributor.author | Van Helden, Paul D. | |
dc.contributor.author | Hoal, Eileen G. | |
dc.date.accessioned | 2013-07-16T07:42:56Z | |
dc.date.available | 2013-07-16T07:42:56Z | |
dc.date.issued | 2013-05 | |
dc.description | Publication of this article was funded by the Stellenbosch University Open Access Fund. | en_ZA |
dc.description | The original publication is available at http://www.plosone.org/ | en_ZA |
dc.description.abstract | Bovine tuberculosis (BTB) is a chronic, highly infectious disease that affects humans, cattle and numerous species of wildlife. In developing countries such as South Africa, the existence of extensive wildlife-human-livestock interfaces poses a significant risk of Mycobacterium bovis transmission between these groups, and has far-reaching ecological, economic and public health impacts. The African buffalo (Syncerus caffer), acts as a maintenance host for Mycobacterium bovis, and maintains and transmits the disease within the buffalo and to other species. In this study we aimed to investigate genetic susceptibility of buffalo for Mycobacterium bovis infection. Samples from 868 African buffalo of the Cape buffalo subspecies were used in this study. SNPs (n = 69), with predicted functional consequences in genes related to the immune system, were genotyped in this buffalo population by competitive allele-specific SNP genotyping. Case-control association testing and statistical analyses identified three SNPs associated with BTB status in buffalo. These SNPs, SNP41, SNP137 and SNP144, are located in the SLC7A13, DMBT1 and IL1a genes, respectively. SNP137 remained significantly associated after permutation testing. The three genetic polymorphisms identified are located in promising candidate genes for further exploration into genetic susceptibility to BTB in buffalo and other bovids, such as the domestic cow. These polymorphisms/genes may also hold potential for marker-assisted breeding programmes, with the aim of breeding more BTB-resistant animals and herds within both the national parks and the private sector. | en_ZA |
dc.description.sponsorship | Stellenbosch University | en_ZA |
dc.description.version | Publishers' version | en_ZA |
dc.format.extent | 6 p. : ill., map | |
dc.identifier.citation | Le Roex, N., Koets, A. P., Van Helden, P. D. & Hoal, E. G. 2013. Gene Polymorphisms in African Buffalo associated with susceptibility to Bovine Tuberculosis Infection. PLoS ONE, 8(5): e64494, doi:10.1371/journal.pone.0064494. | en_ZA |
dc.identifier.issn | 1932-6203 (online) | |
dc.identifier.other | doi:10.1371/journal.pone.0064494 | |
dc.identifier.uri | http://hdl.handle.net/10019.1/85184 | |
dc.language.iso | en_ZA | en_ZA |
dc.publisher | Public Library of Science -- PLoS | en_ZA |
dc.rights.holder | Authors retain copyright | en_ZA |
dc.subject | Bovine tuberculosis (BTB) -- Transmission -- South Africa -- Research | en_ZA |
dc.subject | African buffalo -- Diseases -- South Africa -- Research | en_ZA |
dc.subject | Bovine tuberculosis -- Prevention -- South Africa -- Research | en_ZA |
dc.subject.lcsh | Tuberculosis susceptibility -- Economic aspects --South Africa -- Research | en_ZA |
dc.subject.lcsh | Bovine tuberculosis -- Environmental aspects -- South Africa -- Research | en_ZA |
dc.title | Gene polymorphisms in African buffalo sssociated with susceptibility to Bovine tuberculosis infection | en_ZA |
dc.type | Article | en_ZA |