An analogue of the Andre-Oort conjecture for products of Drinfeld modular surfaces

Date
2013-03
Authors
Karumbidza, Archie
Journal Title
Journal ISSN
Volume Title
Publisher
Stellenbosch : Stellenbosch University
Abstract
ENGLISH ABSTRACT: This thesis deals with a function eld analog of the André-Oort conjecture. The (classical) André-Oort conjecture concerns the distribution of special points on Shimura varieties. In our case we consider the André-Oort conjecture for special points in the product of Drinfeld modular varieties. We in particular manage to prove the André- Oort conjecture for subvarieties in a product of two Drinfeld modular surfaces under a characteristic assumption.
AFRIKAANSE OPSOMMING: Hierdie tesis handel van 'n funksieliggaam analoog van die André-Oort Vermoeding. Die (Klassieke) André-Oort Vermoeding het betrekking tot die verspreiding van spesiale punte op Shimura varietiete. Ons geval beskou ons die André-Oort Vermoeding vir spesiale punte op die produk Drinfeldse modulvarietiete. In die besonders, bewys ons die André-Oort Vermoeding vir ondervarieteite van 'n produk van twee Drinfeldse modulvarietiete, onderhewig aan 'n karakteristiek-aanname.
Description
Thesis (PhD)--Stellenbosch University, 2013.
Keywords
Andre-Oort conjecture, Drinfeld modules, Complex multiplication, Dissertations -- Mathematics, Theses -- Mathematics, Number theory, Drinfeld modular varieties
Citation