On the Latimer-MacDuffee theorem for polynomials over finite fields

Date
2011-03
Authors
Van Zyl, Jacobus Visser
Journal Title
Journal ISSN
Volume Title
Publisher
Stellenbosch : University of Stellenbosch
Abstract
ENGLISH ABSTRACT: Latimer & MacDuffee showed in 1933 that there is a one-to-one correspondence between equivalence classes of matrices with a given minimum polynomial and equivalence classes of ideals of a certain ring. In the case where the matrices are taken over the integers, Behn and Van der Merwe developed an algorithm in 2002 to produce a representative in each equivalence class. We extend this algorithm to matrices taken over the ring Fq[T] of polynomials over a finite field and prove a modified version of the Latimer-MacDuffee theorem which holds for proper equivalence classes of matrices.
AFRIKAANSE OPSOMMING: Latimer & MacDuffee het in 1933 bewys dat daar 'n een-tot-een korrespondensie is tussen ekwivalensieklasse van matrikse met 'n gegewe minimumpolinoom en ekwivalensieklasse van ideale van 'n sekere ring. In die geval waar die matrikse heeltallige inskrywings het, het Behn en Van der Merwe in 2002 'n algoritme ontwikkel om verteenwoordigers in elke ekwivalensieklas voort te bring. Ons brei hierdie algoritme uit na die geval van matrikse met inskrywings in die ring Fq[T] van polinome oor 'n eindige liggaam en ons bewys 'n gewysigde weergawe van die Latimer-MacDuffee stelling wat geld vir klasse van streng ekwivalente matrikse.
Description
Thesis (PhD (Mathematical Sciences))--University of Stellenbosch, 2011.
Includes bibliography.
Keywords
Matrices, Polynomials over a finite field, Ideal classes, Class groups, Dissertations -- Mathematics, Theses -- Mathematics, Latimer-MacDuffee theorem, Equivalence classes of matrices, Equivalence classes of ideals
Citation