Protection number in plane trees
dc.contributor.author | Heuberger, Clemens | en_ZA |
dc.contributor.author | Prodinger, Helmut | en_ZA |
dc.date.accessioned | 2018-08-14T09:27:40Z | |
dc.date.available | 2018-08-14T09:27:40Z | |
dc.date.issued | 2017-10 | |
dc.description | CITATION: Heuberger, C. & Prodinger, H. 2017. Protection number in plane trees. Applicable Analysis and Discrete Mathematics, 11(2):314-326. doi:10.2298/AADM1702314H. | en_ZA |
dc.description | The original publication is available at http://pefmath.etf.rs/home.html | en_ZA |
dc.description.abstract | The protection number of a plane tree is the minimal distance of the root to a leaf; this definition carries over to an arbitrary node in a plane tree by considering the maximal subtree having this node as a root. We study the the protection number of a uniformly chosen random tree of size n and also the protection number of a uniformly chosen node in a uniformly chosen random tree of size n. The method is to apply singularity analysis to appropriate generating functions. Additional results are provided as well. | en_ZA |
dc.description.version | Publishers version | en_ZA |
dc.identifier.citation | Heuberger, C. & Prodinger, H. 2017. Protection number in plane trees. Applicable Analysis and Discrete Mathematics, 11(2):314-326. doi:10.2298/AADM1702314H. | en_ZA |
dc.identifier.issn | 2406-100X (online) | |
dc.identifier.issn | 1452-8630 (printed) | |
dc.identifier.other | doi:10.2298/AADM1702314H | |
dc.identifier.uri | http://hdl.handle.net/10019.1/104259 | |
dc.language.iso | en_ZA | en_ZA |
dc.publisher | University of Belgrade - School of Electrical Engineering | en_ZA |
dc.rights.holder | Authors retain copyright | en_ZA |
dc.subject | Rooted Tree (Mathematics) | en_ZA |
dc.subject | Tree (Graph theory) | en_ZA |
dc.subject | Rooted plane trees (Mathematics) | en_ZA |
dc.subject | Analysis of algorithms | en_ZA |
dc.title | Protection number in plane trees | en_ZA |
dc.type | Article | en_ZA |