Multivariate statistical process evaluation and monitoring for complex chemical processes
dc.contributor.advisor | Le Roux, N. J. | en_ZA |
dc.contributor.advisor | Coetzer, R. L. J. | en_ZA |
dc.contributor.author | Rossouw, Ruan Francois | en_ZA |
dc.contributor.other | Stellenbosch University. Faculty of Economic and Management Sciences. Dept. of Statistics and Actuarial Science. | en_ZA |
dc.date.accessioned | 2015-12-14T07:42:53Z | |
dc.date.available | 2015-12-14T07:42:53Z | |
dc.date.issued | 2015-12 | |
dc.description | Thesis (PhD)--Stellenbosch University, 2015. | en_ZA |
dc.description.abstract | ENGLISH ABSTRACT: In this study, the development of an innovative fully integrated process monitoring methodology is presented for a complex chemical facility, originating at the coal feed from different mines up to the processing of the coal to produce raw gas at the gasification plant. The methodology developed is real-time, visual, detect deviations from expected performance across the whole value chain, and also provide for the integration and standardisation of data from a number of different data sources and formats. Real time coal quality analyses from an XRF analyser are summarised and integrated with various data sources from the Coal Supply Facility to provide information on the coal quality of each mine. In addition, simulation models are developed to generate information on the coal quality of each heap and the quality of the reclaimed coal sent to gasification. A real-time multivariate process monitoring approach for the Coal Gasification Facility is presented. This includes a novel approach utilising Generalised Orthogonal Procrustes Analysis to find the optimal units and time period to employ as a reference set. Principal Component Analysis (PCA) and Canonical Variate Analysis (CVA) theory and biplots are evaluated and extended for the real-time monitoring of the plant. A new approach to process deviation monitoring on many variables is presented based on the confidence ( ) value at a specified T2-value. This methodology is proposed as a general data driven performance index as it is objective, and very little prior knowledge of the system is required. A new multivariate gasifier performance index (GPI) is developed, which integrates subject matter knowledge with a data driven approach for real time performance monitoring. Various software modules are developed which were required for the implementation of the real time multivariate process monitoring methodology, which is made operational and distributed to the clients on an interactive web interface. The methodology has been trademarked by Sasol as the MSPEM™ Technology Package. Following the success of the developed methodology, the MSPEM™ package has been rolled out to many more business units within the Sasol Group. In conclusion, this study presents the development and implementation of the MSPEM™ application for a real-time, integrated and standardised approach to multivariate process monitoring of the Sasol Synfuels Coal Value Chain and Gasification Facility. In summary, the following novel developments were introduced: • The application of distance measures other than Euclidean measures are introduced for space filling designs for computer experiments in mixture variables. • An approach utilising Generalised Orthogonal Procrustes Analysis to specify the optimal units and time period to employ as a reference set is developed. • An approach to process deviation monitoring on many variables is presented based on the confidence ( ) value at a specified T2-value. • An integrated approach to a reactor performance index is developed and illustrated. • A comprehensive software infrastructure is developed and implemented | en_ZA |
dc.description.abstract | AFRIKAANSE OPSOMMING: In hierdie studie word die ontwikkeling van ’n innoverende en ten volle geïntegreerde proses moniteringsmetodologie vir ’n komplekse chemiese fasiliteit aangebied. Die metodologie is ontwikkel vir die monitering van die steenkool kwaliteite vanaf die verskillende myne tot en met die verwerking van die steenkool om rou gas te produseer by die steenkool vergassingsaanleg, asook die intydse monitering van die gasproduksie en effektiwiteit van die aanleg. Die ontwikkelde metode is intyds, visueel, spoor afwykings van verwagte verrigting oor die hele waarde ketting op, en maak ook voorsiening vir die integrasie en standaardisering van data afkomstig van verskillende bronne en formate. Intydse steenkool kwaliteitsmetings met ’n XRF analiseerder word opgesom en geïntegreer met verskeie bestaande data bronne uit die steenkoolfasiliteit om inligting oor die gehalte van steenkool vanaf elke myn te voorsien. Daarbenewens is simulasie modelle ontwikkel om inligting oor die kwaliteit van elke steenkool bergingshoop sowel as die kwaliteit van die herwonne steenkool na vergassing te verskaf. ’n Intydse meerveranderlike proses moniteringsmetodologie vir die steenkool vergassingsfasiliteit word aangebied. Dit sluit in ’n nuwe benadering om die optimale reaktors en tydperk te vind wat gebruik kan word as die verwysingsdatastel. Veralgemeende Ortogonale Procrustes Analise (GOPA) is hiervoor gebruik en aangepas. Hoofkomponent-analise (PCA) en Kanoniese Veranderlike Analise (CVA) teorie, tesame met bistippings, word geëvalueer en uitgebrei vir die intydse monitering van die produksieaanleg. ’n Nuwe benadering tot die monitering van die gelyktydige proses afwykings van ’n groot aantal veranderlikes word aangebied, gebaseer op die vertrouenskoëffisiënt ( ) vir ’n bepaalde T2-waarde. Hierdie metodologie word voorgestel as ’n algemene data-gedrewe verrigtingsindeks aangesien dit objektief is, en baie min historiese kennis van die stelsel word vereis. ’n Nuwe meerveranderlike verrigtingsindeks (GPI) vir die vergassers is ontwikkel, wat kennis van die proses integreer met ’n data-gedrewe benadering vir die intydse monitering van verrigting. Verskeie sagteware modules is ontwikkel vir die implementering van die intydse meerveranderlike prosesmoniteringsmetodologie, wat operasioneel gemaak en beskikbaar gestel is aan die kliënte met behulp van ’n interaktiewe webkoppelvlak. Die metodologie is gehandelsmerk deur Sasol as die MSPEM™ Tegnologie Pakket. Na aanleiding van die sukses van die ontwikkelde metodologie, is die MSPEM™ pakket uitgerol na baie meer produksie aanlegte in Sasol. Ten slotte, hierdie studie bied die ontwikkeling en implementering van die MSPEM™ pakket aan vir ’n intydse, geïntegreerde en gestandaardiseerde benadering tot meerveranderlike proses monitering van die Sasol Synfuels Steenkool Waardeketting en die Steenkool Vergassingsfasiliteit. Verder is die volgende nuwe ontwikkelings bekendgestel: • Die toepassing van afstandsmetings anders as Euklidiese afstand om die eksperimentele ruimte te vul in rekenaareksperimente. • ’n Benadering is ontwikkel om die optimale reaktors en tydperk te vind wat gebruik kan word as ’n verwysingsdatastel vir intydse monitering, deur gebruik te maak van Veralgemeende Ortogonale Procrustes Analise (GOPA). • ’n Benadering gebaseer op die vertrouenskoëffisiënt ( ) vir ’n bepaalde T2-waarde is ontwikkel vir die monitering van die gelyktydige proses afwykings van ’n groot aantal veranderlikes. • ’n Geïntegreerde benadering is ontwikkel vir die verkryging van ’n reaktor verrigtingsindeks en is kommersieël toegepas en geïllustreer. | af_ZA |
dc.format.extent | 408 pages : illustrations | |
dc.identifier.uri | http://hdl.handle.net/10019.1/97869 | |
dc.language.iso | en_ZA | en_ZA |
dc.publisher | Stellenbosch : Stellenbosch University | en_ZA |
dc.rights.holder | Stellenbosch University | en_ZA |
dc.subject | Process control -- Statistical methods | en_ZA |
dc.subject | Multivariate analysis | en_ZA |
dc.subject | Petroleum chemicals industry | en_ZA |
dc.subject | UCTD | en_ZA |
dc.subject | Chemical process control -- Statistical methods | en_ZA |
dc.title | Multivariate statistical process evaluation and monitoring for complex chemical processes | en_ZA |
dc.type | Thesis | en_ZA |