Flow and heat transfer in packed beds of rock.
dc.contributor.advisor | Hoffmann, JE | en_ZA |
dc.contributor.author | Hassan, EBE | en_ZA |
dc.contributor.other | Stellenbosch University. Faculty of Engineering. Dept. of Mechanical and Mechatronic Engineering. | en_ZA |
dc.date.accessioned | 2023-11-22T15:22:11Z | en_ZA |
dc.date.accessioned | 2024-01-08T21:10:09Z | en_ZA |
dc.date.available | 2023-11-22T15:22:11Z | en_ZA |
dc.date.available | 2024-01-08T21:10:09Z | en_ZA |
dc.date.issued | 2023-11 | en_ZA |
dc.description | Thesis (PhD)--Stellenbosch University, 2023. | en_ZA |
dc.description.abstract | ENGLISH ABSTRACT: Utilizing thermal energy storage systems in a solarized Brayton cycle increases the capacity factor of the power plant by using waste heat. The waste heat can be used to power a Rankine cycle to produce additional energy after sunset or during periods of high demand. Packed beds of crushed rock have been proposed as a promising storage solution since it is readily available, inexpensive, and able to withstand high temperatures. Dolerite is one of the rock types selected as the optimal choice for storing high temperatures. Nevertheless, predicting the pressure drop over a packed bed is a crucial parameter for estimating the pumping power of the system. There are various parameters that influence the pressure drop through the bed, such as the shapes and sizes of the crushed rocks, which affect the packing density and particle orientation. In this study, the investigation of the pressure drop through the packed bed of crushed rock depending on the flow direction was conducted. The crushed rock was represented by an ellipsoidal shape with the same volume and aspect ratio as the average of randomly collected crushed rock samples. This is because the aspect ratio is considered one of the particle characteristics that enables one to capture the flow directional effect. Simulation models were developed to assist in deriving a pressure drop correlation as well as the effect of particle orientation on pressure drop. For simulation, a discrete element model (DEM) was used to generate the particles and computational fluid dynamics (CFD) to simulate the flow at pore scale over the particles. Firstly, a packed bed of ellipsoidal particles was developed using a DEM-CFD method. Afterward, an experimental model was developed to validate the DEM-CFD model. Following the validation, the DEM-CFD model was compared with a crushed rock packed bed to examine how well the ellipsoid particles represent the crushed rocks. The findings reveal that the model successfully captured the flow direction effect across the crushed rock bed. However, it underestimated the pressure drop through the crushed rock by 5 % in horizontal flow and overestimated it by 20 % in vertical flow. The wall has a direct effect on the particles' alignment, where at the bottom of the container the particles are aligned with their flat faces. The wall effect is high for the particles close to it; however, it does not extend deep into the bed. Additionally, it depends on the bed-to-particle diameter ratio. For a large rock bed where it is a free packing bed, the wall has an insignificant effect on the particles' alignment. Therefore, the wall effect was then eliminated from the DEM-CFD model, and a correlation was proposed to predict the pressure drop through a crushed rock packed bed using the porous media approach. The proposed correlation was used to predict the pressure drop across a packed bed of 10 MWth. The findings were compared with the isotropic Ergun model. After investigation of the outcomes, it was found that the proposed correlation captured the directional effect. Also, it was predicted that the pressure drop across a porous bed would be about 22 % lower than that predicted by the Ergun equation in the vertical direction. | en_ZA |
dc.description.abstract | AFRIKAANSE OPSOMMING: Die gebruik van termiese energiebergingstelsels in 'n gesolariseerde Braytonsiklus verhoog die kapasiteitsfaktor van die kragsentrale deur die afvalhitte te gebruik. Die afvalhitte kan gebruik word om 'n Rankine-siklus aan te dryf om bykomende energie te produseer na sononder of gedurende periodes van hoë aanvraag. Gepakte beddings van gebreekte rots is voorgestel as 'n belowende bergingsoplossing aangesien dit geredelik beskikbaar is, goedkoop en in staat is om hoë temperature te weerstaan. Doleriet is een van die gesteentes wat gekies is as die optimale keuse vir die berging van hoë temperature. Nietemin is die voorspelling van die drukval oor 'n gepakte bed 'n deurslaggewende parameter vir die skatting van die pompkrag van die stelsel. Daar is verskeie parameters wat die drukval deur die bedding beïnvloed, soos die vorms en groottes van die gebreekte rotse, wat die pakkingsdigtheid en deeltjieoriëntasie beïnvloed. In hierdie studie is die ondersoek van die drukval deur die gepakte bed van gebreekte rots, afhangende van die vloeirigting, uitgevoer. Die gebreekte rots is voorgestel deur 'n ellipsvormige vorm met dieselfde volume en aspekverhouding as die gemiddelde van ewekansig versamelde gebreekte rotsmonsters. Dit is omdat die aspekverhouding beskou word as een van die deeltjie-eienskappe wat dit moontlik maak om die vloeirigting-effek vas te vang. Simulasiemodelle is ontwikkel om te help met die afleiding van 'n drukvalkorrelasie sowel as die effek van partikeloriëntasie op drukval. Vir simulasie is 'n diskrete element model (DEM) gebruik om die deeltjies en berekeningsvloeistofdinamika (CFD) te genereer om die vloei op porie skaal oor die deeltjies te simuleer. Eerstens is 'n gepakte bed van ellipsoïdale deeltjies ontwikkel met behulp van 'n DEM-CFD-metode. Daarna is 'n eksperimentele model ontwikkel om die DEM-CFD-model te valideer. Na die validering, is die DEM-CFD model vergelyk met 'n gebreekte rots-gepakte bed om te ondersoek hoe goed die ellipsoïde deeltjies die vergruisde rotse verteenwoordig. Die bevindinge toon dat die model die vloeirigting-effek oor die gebreekte rotsbedding suksesvol vasgevang het. Dit het egter die drukval deur die gebreekte rots met 5 % in horisontale vloei onderskat en dit met 20 % in vertikale vloei oorskat. Die muur het 'n direkte effek op die deeltjies se belyning, waar die deeltjies aan die onderkant van die houer met hul plat vlakke in lyn is. Die muureffek is hoog vir die deeltjies naby daaraan; dit strek egter nie diep in die bed nie. Boonop hang dit af van die bed-tot-deeltjie-deursneeverhouding. Vir 'n groot rotsbedding waar dit 'n vrye pakbed is, het die muur 'n onbeduidende effek op die deeltjies se belyning. Daarom is die muureffek dan uit die DEM-CFD-model uitgeskakel, en 'n korrelasie is voorgestel om die drukval deur 'n gebreekte rots-gepakte bed te voorspel deur die poreuse media-benadering te gebruik. Die voorgestelde korrelasie is gebruik om die drukval oor 'n gepakte bed van 10 MWth te voorspel. Die bevindinge is vergelyk met die isotropiese Ergun-model. Na ondersoek van die uitkomste is gevind dat die voorgestelde korrelasie die rigting-gewende effek vasgevang het. Daar is ook voorspel dat die drukval oor 'n poreuse bed ongeveer 22 % laer sou wees as wat deur die Ergun-vergelyking in die vertikale rigting voorspel is. | af_ZA |
dc.description.version | Doctotorate | en_ZA |
dc.format.extent | xvii, 119 pages : illustrations | en_ZA |
dc.identifier.uri | https://scholar.sun.ac.za/handle/10019.1/129066 | en_ZA |
dc.language.iso | en_ZA | en_ZA |
dc.language.iso | en_ZA | en_ZA |
dc.publisher | Stellenbosch : Stellenbosch University | en_ZA |
dc.rights.holder | Stellenbosch University | en_ZA |
dc.subject.lcsh | Heat storage | en_ZA |
dc.subject.lcsh | Waste heat | en_ZA |
dc.subject.lcsh | Brayton cycle | en_ZA |
dc.subject.lcsh | Rankine cycle | en_ZA |
dc.subject.lcsh | Discrete element method | en_ZA |
dc.subject.lcsh | Computational fluid dynamics | en_ZA |
dc.subject.lcsh | Heat -- Transmission | en_ZA |
dc.subject.lcsh | Unsteady flow (Fluid dynamics) | en_ZA |
dc.title | Flow and heat transfer in packed beds of rock. | en_ZA |
dc.type | Thesis | en_ZA |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- hassan_flow_2023.pdf
- Size:
- 3.42 MB
- Format:
- Adobe Portable Document Format
- Description: