Human-robot collaboration for efficient circularity decision-making for end-of-usage products

dc.contributor.advisorDe Kock, Imke en_ZA
dc.contributor.advisorBraun, Anjaen_ZA
dc.contributor.authorLöffler, Stefanieen_ZA
dc.contributor.otherStellenbosch University. Faculty of Engineering. Dept. of Industrial Engineering.en_ZA
dc.date.accessioned2024-02-13T13:50:04Zen_ZA
dc.date.accessioned2024-04-27T02:19:04Zen_ZA
dc.date.available2024-02-13T13:50:04Zen_ZA
dc.date.available2024-04-27T02:19:04Zen_ZA
dc.date.issued2024-03en_ZA
dc.descriptionThesis (MEng)--Stellenbosch University, 2024.en_ZA
dc.description.abstractENGLISH ABSTRACT: As we move into industry 5.0, the traditional linear economic model is proving unsustainable in the face of resource depletion and climate change. The circular economy offers a more promising path, shifting away from the take-make-dispose approach to create a more sustainable and resilient future. The circular economy focuses on resource efficiency, reducing waste, and preserving value, challenging the traditional "end of life" concept for products. However, the transition is challenging due to many products not being designed for recovery, hindering the shift from a linear to a circular product life cycle. This thesis proposes a human-robot collaboration to improve circularity decision-making for end-of usage products to enable the circular economy. Methodologically, the thesis follows the design science research approach and reviews the literature systematically to provide a generic understanding of the knowledge base and the application domain. Using this knowledge the thesis underscores the integration of human-robot collaboration into decision-making processes, emphasizing the economic, environmental, and social factors as well as product and production related information crucial for well-informed decisions within the circular economy. It explores the joint decision-making process and highlights the pivotal role of human-robot collaboration in achieving sustainability and circularity in product lifecycle management by elaborating on the unique strengths of both humans and cobots. For this, this thesis provides skill profiles of the human operator and the cobot focusing on the cognitive abilities of individuals and the analytical prowess of cobots. Additionally, the recovery strategies of the circular economy are examined for their compatibility with human-robot collaboration, and the integration of advanced technologies such as sensors and machine learning are explored. Those findings resulted in a generic decision-making framework integrating the skills of human operators and cobots to assign products to the optimal recovery strategy. For the evaluation, a case study in a collaborative environment is conducted. For this, a user friendly graphical user interface is chosen to deploy a developed machine-learning algorithm for image classification in a workstation where a cobot and a human operator execute the decision process following the framework.en_ZA
dc.description.abstractAFRIKAANSE OPSOMMING: Met die vooruitgang na Industrie 5.0 word die tradisionele lineêre ekonomiese model onvolhoubaar gevind in die gesig van hulpbronuitputting en klimaatsverandering. Die sirkulêre ekonomie bied 'n meer belowende opsie deur weg te skuif van die „take-make-dispose“ benadering om 'n meer volhoubare en veerkragtige toekoms te skep. Die sirkulêre ekonomie fokus op hulpbron doeltreffendheid, afval vermindering, en behoud van waarde, wat die tradisionele "einde van lewe" konsep vir produkte uitdaag. Nietemin is die oorgang uitdagend omdat baie produkte nie ontwerp is vir herwinning nie, wat die skuif van 'n lineêre produklewensiklus na 'n sirkulêre produklewensiklus belemmer. Hierdie tesis stel 'n mens-robot-samewerking voor om sirkulariteit besluitneming vir eindgebruikprodukte te verbeter ten einde die sirkulêre ekonomie moontlik te maak. Metodologies volg die tesis die ontwerp wetenskap navorsingsbenadering en ondersoek die literatuur sistematies om 'n generiese begrip van die kennisbasis en die toepassingsdomein te bied. Deur hierdie kennis te gebruik beklemtoon die tesis die integrasie van mens-robot-samewerking in besluitnemingsprosesse, waar die ekonomiese, omgewings- en sosiale faktore asook produk- en produksieverwante inligting beklemtoon word as krities vir ingeligde besluitneming binne die sirkulêre ekonomie. Dit ondersoek die gesamentlike besluitnemingsproses en beklemtoon die sleutelrol van mens-robot-samewerking om volhoubaarheid en sirkulariteit in die bestuur van die produklewensiklus te bereik deur na die unieke sterkpunte van mense en „cobot“ te kyk. Hiervoor voorsien die tesis vaardigheidsprofiele van die menslike operateur en die „cobot“, wat fokus op die kognitiewe vermoëns van individue en die analitiese vaardighede van „cobots“. Die herwinstrategieë van die sirkulêre ekonomie word verder ondersoek vir hul verenigbaarheid met mens-robot-samewerking en die integrasie van gevorderde tegnologieë soos sensors en masjienleer word verken. Hierdie bevindinge het gelei tot 'n generiese besluitnemingsraamwerk wat die vaardighede van menslike operateurs en „cobots“ integreer om produkte aan die optimale herwinstrategie toe te ken. Vir evaluasie word 'n gevallestudie in 'n samewerkingsomgewing uitgevoer. Hiervoor is 'n gebruikersvriendelike grafiese gebruikerskoppelvlak gekies om 'n ontwikkelde masjienleeralgoritme vir beeldklassifikasie te implementeer in 'n werkstasie waar 'n cobot en 'n menslike operateur die besluitnemingsproses volgens die raamwerk uitvoer.af_ZA
dc.description.versionMastersen_ZA
dc.identifier.urihttps://scholar.sun.ac.za/handle/10019.1/130677en_ZA
dc.language.isoen_ZAen_ZA
dc.language.isoen_ZAen_ZA
dc.publisherStellenbosch : Stellenbosch Universityen_ZA
dc.rights.holderStellenbosch Universityen_ZA
dc.subject.lcshHuman-robot interactionen_ZA
dc.subject.lcshCircular economy -- Automationen_ZA
dc.subject.lcshDecision makingen_ZA
dc.subject.lcshUCTDen_ZA
dc.titleHuman-robot collaboration for efficient circularity decision-making for end-of-usage productsen_ZA
dc.typeThesisen_ZA
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
loeffler_human_2024.pdf
Size:
5.97 MB
Format:
Adobe Portable Document Format
Description: