Manufacturing intelligence : a dissemination of intelligent manufacturing principles with specific application
dc.contributor.advisor | Fourie, C. J. | |
dc.contributor.author | Schlechter, E. J. (Emile Johan) | |
dc.contributor.other | Stellenbosch University. Faculty of Engineering. Dept. of Industrial Engineering. | en_ZA |
dc.date.accessioned | 2012-08-27T11:35:13Z | |
dc.date.available | 2012-08-27T11:35:13Z | |
dc.date.issued | 2002-04 | |
dc.description | Thesis (MEng)--University of Stellenbosch, 2002. | en_ZA |
dc.description.abstract | ENGLISH ABSTRACT: Artificial intelligence has provided several techniques with applications in manufacturing. Knowledge based systems, neural networks, case based reasoning, genetic algorithms and fuzzy logic have been successfully employed in manufacturing. This thesis will provide the reader with an introduction and an understanding of each of these techniques (Chapter 2 & 3). The intelligent manufacturing process can be a complex one and can be decomposed into several components: intelligent design, intelligent process planning, intelligent quality management, intelligent maintenance and diagnosis, intelligent scheduling and intelligent control. This thesis will focus on how each of the artificial intelligence techniques can be applied to each of the manufacturing process fields. Chapter 5 Chapter 6 Chapter 7 Knowledge based systems Neural networks Fuzzy logic Case based reasoning Genetic algorithms Chapter 8 Chapter 9 Chapter 10 Manufacturing intelligence can be approached from two main directions: theoretical research and practical application. Most of the concepts, methods and techniques discussed in this thesis are approached from a theoretical research point of view. This thesis is also aimed at providing the reader with a broader picture of manufacturing intelligence and how to apply the intelligent techniques, in theory. Specific attention will be given to intelligent scheduling as an application (Chapter 11). The application will demonstrate how case based reasoning can be applied in intelligent scheduling within a small manufacturing plant. | en_ZA |
dc.description.abstract | AFRIKAANSE OPSOMMING: Kunsmatige intelligensie bied 'n verskeidenheid tegnieke en toepassings in die vervaardigingsomgewing. Kennis baseerde sisteme, neurale netwerke, gevalle basseerde redenasie, generiese algoritmes en wasige logika word suksesvol in die vervaardigingsopset toegepas. Dié tesis gee die leser 'n inleiding en basiese oorsig van metodes om elk van die tegnieke te gebruik (hoofstuk 2 & 3). Die intelligente vervaardigingproses is 'n komplekse proses en kan afgebreek word in verskeie komponente: intelligente ontwerp, intelligente prosesbeplanning, intelligente gehaltebestuur, intelligente onderhoud en diagnose, intelligente kontrole en intelligente skedulering. Hierdie tesis sal fokus op hoe elk van die kunsmatige intelligente tegnieke op elk van die vervaardigingprosesvelde toegepas kan word. Hoofstuk 5 Hoofstuk 6 Hoofstuk 7 Kennis gebaseerde sisteme Wasige logika Neurale netwerke Gevalle baseerde redenasie Generiese algoritmes Hoofstuk 8 Hoofstuk 9 Hoofstuk 10 Vervaardigingsintelligensie kan vanuit twee oogpunte benader word, naamlik 'n teoretiese ondersoek en 'n praktiese aanslag. Die meeste van hierdie konsepte, metodes en tegnieke word in hierdie tesis vanuit 'n teoretiese oogpunt benader. Die tesis is daarop gerig om die leser 'n wyer perspektief te gee van intelligente vervaardiging en hoe om die intelligente tegnieke, in teorie, toe te pas. Spesifieke aandag sal gegee word aan intelligente skedulering as 'n toepassing (Hookstuk 11). Die toepassing sal demonstreer hoe gevalle baseerde redenasie toegepas kan word in intelligente skedulering. | af_ZA |
dc.format.extent | 211 p. : ill. | |
dc.identifier.uri | http://hdl.handle.net/10019.1/52927 | |
dc.language.iso | en_ZA | en_ZA |
dc.publisher | Stellenbosch : Stellenbosch University | en_ZA |
dc.rights.holder | Stellenbosch University | en_ZA |
dc.subject | Artificial intelligence -- Industrial applications | en_ZA |
dc.subject | Manufacturing processes -- Planning -- Data processing | en_ZA |
dc.subject | Computer integrated manufacturing systems | en_ZA |
dc.subject | Production planning -- Data processing | en_ZA |
dc.subject | Dissertations -- Industrial engineering | en_ZA |
dc.subject | Theses -- Industrial engineering | en_ZA |
dc.title | Manufacturing intelligence : a dissemination of intelligent manufacturing principles with specific application | en_ZA |
dc.type | Thesis | en_ZA |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- schlechter_manufacturing_2002.pdf
- Size:
- 44.79 MB
- Format:
- Adobe Portable Document Format
- Description: