The categorical and algebraic aspects of near-modules and near-vector spaces

Date
2023-03
Journal Title
Journal ISSN
Volume Title
Publisher
Stellenbosch : Stellenbosch University
Abstract
ENGLISH SUMMARY: In this thesis we generalize some results from vector spaces to near-vector spaces in the sense of J. André. In particular, we establish the First Isomorphism Theorem, which leads us to proving that the category of near-vector spaces is an abelian category. We also include an algebraic proof of the non-trivial fact that a subspace of a near-vector space is itself a near-vector space. Other algebraic and categorical properties of near-vector spaces are also obtained.
AFRIKAANSE OPSOMMING: In hierdie tesis veralgemeen ons sommige resultate van vektorruimtes na byna-vektorruimtes in die sin van J. André. Ons maak spesifiek die Eerste Isomorfisme Stelling, wat ons daartoe lei om te bewys dat die kategorie van byna-vektorruimtes ’n Abelse kategorie is. Ons sluit ook algebraiese bewys in van die nie-triviale feit dat ’n subruimte van ’n bynavektorruimte op sigself ’n byna-vektorruimte is. Ander algebraiese en kategorie eienskappe van byna-vektorruimtes word ook verkry.
Description
Thesis (MSc)--Stellenbosch University, 2023.
Keywords
near-vector spaces
Citation