Study of cyclotomic extensions of degree power of 2 and classification of radical extensions up to isomorphism

dc.contributor.advisorMarques, Sophieen_ZA
dc.contributor.authorMrema, Elizabethen_ZA
dc.contributor.otherStellenbosch University. Faculty of Science. Dept. of Mathematical Sciences.en_ZA
dc.date.accessioned2024-02-20T10:58:55Z
dc.date.accessioned2024-04-26T13:12:37Z
dc.date.available2024-02-20T10:58:55Z
dc.date.available2024-04-26T13:12:37Z
dc.date.issued2024-03
dc.descriptionThesis (PhD)--Stellenbosch University, 2024. en_ZA
dc.description.abstractIn this thesis, we gain a deeper understanding of cyclotomic extensions of degree powers of 2 and the classification of radical extensions (both separable and insepaโ€‘ rable) up to isomorphism. Our main results about cyclotomic extensions of degree power of 2 describe their Galois structures, their degrees, their subextensions, their tower decompositions, and the minimal polynomials of some traces of root of unity generating all their subsextensions over an arbitrary base field. In exploring these asโ€‘ pects, we discover two important invariants ๐“๐‘โˆž and ๐œˆ๐‘โˆž where ๐‘ is a prime number, holding essential information about cyclotomic extensions of degree 2 and those genโ€‘ erated by primitive (2๐‘’)๐‘กโ„Ž roots of unity where ๐‘’ โˆˆ โ„•. In our quest to provide explicit expressions for the coefficients of the minimal polynomials of the subextensions of cyclotomic extensions generated by primitive (2๐‘’)๐‘กโ„Ž root of unity, we discover fasciโ€‘ nating characterizations, some of which are linked to the wellโ€‘known Catalan numโ€‘ bers solving Combinatorial problems using field theory. Building upon the insights gained from our exploration of cyclotomic extensions, we provide a comprehensive classification of separable and inseparable radical exโ€‘ tensions up to isomorphism. In order to have a global understanding of these extenโ€‘ sions up to isomorphism, we exhibit a meaningful parameterization of the set of isoโ€‘ morphic radical extensions into moduli spaces involving the action of some groups.en_ZA
dc.description.abstractAFRIKAANSE OPSOMMING: In hierdie tesis verkry ons โ€™n dieper verstaan van siklotomiese uitbreidings waarvan die graad magte van 2 is en die klassifikasie van radikale uitbreidings (skeibaar en onโ€‘ skeibaar), tot isomorfisme. Ons hoofresultate oor siklotomies uitbreidings waarvan die graad ล‰ mag van 2 is, beskryf hulle Galoisโ€‘strukture, hulle grade, hulle deeluitโ€‘ breidings, hulle toringโ€‘ontbindings, en die minimale polinome van sommige spore van eenheidwortels wat al hul deeluitbreidings oor โ€™n willekeurige basisliggaam geโ€‘ nereer. Deur hierdie aspekte te ondersoek, ontdek ons twee belangrike invariante ๐“๐‘โˆž en ๐œˆ๐‘โˆž waar ๐‘ โ€™n priemgetal is, wat noodsaaklike inligting bevat oor siklotomiese uitbreidings van graad 2 en dieฬ gegenereer deur primitiewe (2๐‘’)๐‘‘๐‘’ eenheidswortels waar ๐‘’ โˆˆ โ„•. In ons strewe om eksplisiete uitdrukkings te verskaf vir die koeฬˆffisiโ€‘ eฬˆnte van die minimale polinome van die deeluitbreidings van siklotomiese uitbreiโ€‘ dings gegenereer deur primitiewe (2๐‘’)๐‘‘๐‘’ eenheidswortels, ontdek ons fassinerende karakteriserings, waarvan sommige gekoppel is aan die bekende Katalaanse getalle wat kombinatoriese probleme oplos deur liggaamsteorie te gebruik. Voortbouend op die insigte verkry uit ons verkenning van siklotomiese uitbreiโ€‘ dings, bied ons โ€™n omvattende klassifikasie van skeibare en onskeibare radikale uitโ€‘ breidings, tot isomorfisme. Ten einde โ€™n globale verstaan van hierdie uitbreidings, tot isomorfisme, te heฬ‚, toon ons โ€™n betekenisvolle parameterisering van die stel isoโ€‘ morfiese radikale uitbreidings in moduliโ€‘ruimtes wat die aksie van sommige groepe behels.af_ZA
dc.description.versionDoctorateen_ZA
dc.identifier.urihttps://scholar.sun.ac.za/handle/10019.1/130317
dc.language.isoen_ZAen_ZA
dc.language.isoen_ZAen_ZA
dc.publisherStellenbosch : Stellenbosch Universityen_ZA
dc.rights.holderStellenbosch Universityen_ZA
dc.subject.lcshField extensions (Mathematics)en_ZA
dc.subject.lcshCyclotomic fieldsen_ZA
dc.subject.lcshIsomorphisms (Mathematics)en_ZA
dc.subject.lcshGalois modules (Algebra)en_ZA
dc.subject.nameUCTDen_ZA
dc.titleStudy of cyclotomic extensions of degree power of 2 and classification of radical extensions up to isomorphismen_ZA
dc.typeThesisen_ZA
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
mrema_study_2024.pdf
Size:
2.25 MB
Format:
Adobe Portable Document Format
Description: